
A Timing Attack against RSA

with the Chinese Remainder Theorem

Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI)
Godesberger Allee 183, 53175 Bonn, Germany

Werner.Schindler@bsi.bund.de

Abstract. We introduce a new type of timing attack which enables the
factorization of an RSA-modulus if the exponentiation with the secret
exponent uses the Chinese Remainder Theorem and Montgomery’s algo-
rithm. Its standard variant assumes that both exponentiations are carried
out with a simple square and multiply algorithm. However, although its
efficiency decreases, our attack can also be adapted to more advanced
exponentiation algorithms. The previously known timing attacks do not
work if the Chinese Remainder Theorem is used.

Keywords: Timing attack, RSA, Chinese Remainder Theorem, Mont-
gomery multiplication.

1 Introduction

The central idea of any timing attack is to determine a secret parameter from
differences between running times needed for various input values. At Crypto
96 Kocher introduced a timing attack on modular exponentiations ([6]). In [3] a
successful attack against an early version of a Cascade smart card is described. In
[9] these attacks are optimized and, moreover, the assumptions on the attacker’s
abilities are weakened considerably.

The attacks mentioned above recover an unknown exponent (e.g. a secret
RSA key) bit by bit. They yet do not work if the Chinese Remainder Theorem
(CRT) is used as it is essential to know the exact input values of the respec-
tive arithmetical operations at any instant. (Concerning the CRT there is no
more than a rough idea sketched in [6] (Sect. 7) how to exploit time differences
caused by the initial reduction y 7→ y(mod pj). However, this should be of little
practical significance since the variance of the remaining hundreds of arithmetic
operations usually is gigantic compared with this effect.)

In this paper we introduce and investigate a completely new type of timing
attack. It enables the factorization of an RSA modulus n if the exponentiation
with the secret exponent uses the CRT while the multiplications and squarings
modulo the prime factors p1 and p2 are carried out with Montgomery’s algorithm
([8]). The standard variant of our attack assumes that both exponentiations use
a simple square and multiply algorithm. Although its efficiency decreases, our
attack can also be adapted to more advanced exponentiation algorithms. Our

Ç.K. Koç and C. Paar (Eds.): CHES 2000, LNCS 1965, pp. 109–124, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

110 Werner Schindler

attack is very robust and, for comparison, needs notably fewer time measure-
ments than the attacks introduced in [6] and [3]. If exponentiation uses square
and multiply under optimal circumstances the standard variant of our attack
requires fewer than 600 time measurements to factor a 1024 bit modulus n.
Making use of a lattice-based algorithm introduced by Coppersmith in [2] again
nearly halves this number of time measurements. Further, one can verify during
the attack with high probability whether the decisions have been correct so far.
The only weakness of our attack is that it is a chosen-input attack.

First, we briefly describe and investigate Montgomery’s algorithm and ex-
ponentiation with CRT. In Sect. 3 general assumptions are formulated and dis-
cussed and the central idea of our attack is illustrated. In Sect. 4 and 5 the
standard variant of our attack is worked out, error probabilities are computed,
and mechanisms for error detection and error correction are discussed. Sect. 6
presents results of practical experiments and in Sect. 7 we extend our attack to
implementations which use more advanced exponentiation schemes than square
and multiply. The paper ends with remarks on fields of application, possible
countermeasures and concluding remarks.

2 Montgomery’s Algorithm and the CRT

Let (dwdw−1 . . . d0)2 denote the binary representation of d ∈ IN where dw = 1
denotes the most significant bit. If d denotes a secret key the computation of
yd(mod m) usually requires hundreds of modular squarings and multiplications.
Hence many implementations use Montgomery’s algorithm ([8]) which transfers
time-consuming modular multiplications modulo m to a modulus R > m with
gcd(R, m) = 1 which fits to the device’s hardware architecture. (Usually R = 2ω

where ω is a multiple of 32 or 64.)
Let’s have a closer look at Montgomery’s algorithm. As usually, for a ∈ Z

the term a(mod m) denotes the smallest nonnegative integer which is congruent
to a modulo n while R−1 ∈ Zm := {0, 1, . . . , m − 1} denotes the multiplicative
inverse of R in Zm. The integer m∗ ∈ ZR satisfies the equation RR−1−mm∗ = 1
in Z. To simplify notation we introduce the mappings Ψ, Ψ∗: Z → Zm defined by
Ψ(x) := (xR)(mod m) and Ψ∗(x) := (xR−1)(mod m). As easily can be checked
Ψ and Ψ∗ are bijective on Zm and, moreover, inverse mappings; i.e. Ψ∗(Ψ(x)) = x
for all x ∈ Zm. For a′ := Ψ(a) and b′ := Ψ(b) Montgomery’s algorithm returns
s := Ψ∗(Ψ(a)Ψ(b)) = Ψ(ab). The subtraction s − m in line 4 is called extra
reduction.

Montgomery’s algorithm
z:=a’b’
r:=(z(mod R)m∗) (mod R)
s:=(z+rm)/R
if s≥m then s:=s-m
return s (= Ψ∗(a′b′) = a′b′R−1(mod m))

Remark 1. Many implementations use a more efficient multiprecision variant
of Montgomery’s algorithm than listed above (see e.g. [7], Algorithm 14.36, or

A Timing Attack against RSA with the Chinese Remainder Theorem 111

[10]). The factors a′ and b′ then are internally represented with respect to a
basis h which fits perfectly to the hardware multipliers (typically, h = 232),
that is, a′ :=

∑t−1
j=0 a′

jh
j and b′ :=

∑t−1
j=0 b′jh

j. Instead of the product a′b′ and
the reduction modulo R := ht it suffices to calculate a′

0b
′, a′

1b
′, . . . , a′

t−1b
′ and to

perform t reductions modulo h. However, whether an extra reduction is necessary
does not depend on the chosen basis h but on R := ht. (This can be verified
with a simple induction proof.) Thus, as will become clear later, the concrete
realization of Montgomery’s algorithm is indeed of no significance for our attack.

Combined with Montgomery’s algorithm the square and multiply exponentiation
algorithm reads as follows:

Exponentiation algorithm 1
(Square and multiply using Montgomery’s algorithm)
temp := Ψ(y)
for i=w-1 down to 0 do {
temp := Ψ∗(temp2)
if (di=1) then temp := Ψ∗(temp*Ψ(y))
}

return Ψ∗(temp)
Suggestively, we call operations Ψ∗(temp2) and Ψ∗(temp ∗ Ψ(y)) Montgomery
multiplications in the following. The number of extra reductions in Exponenti-
ation algorithm 1 depends on the particular base y, or more directly, on Ψ(y).

Lemma 1. (i) Montgomery’s algorithm requires an extra reduction step iff

a′b′

Rm
+

a′b′m∗(mod R)
R

≥ 1. (1)

(ii) Let the random variable B be equidistributed on Zm. Unless the ratio
R/gcd(R, Ψ(a)) is extremely small

Prob (extra reduction in Ψ∗(Ψ(a)B)) =
Ψ(a)
2R

for a ∈ Zm (2)

holds and similarly

Prob
(
extra reduction in Ψ∗(B2)

)
=

m

3R
. (3)

Proof. For the proof of (1) to (3) we refer the interested reader to [9]. We merely
sketch the central idea to verify (2). Its left-hand side is equivalent to Prob(Ac+
(Acmm∗(mod 1)) ≥ 1) where we temporarily use the abbreviations A := B/m
and c := Ψ(a)/R. Further, for fixed v ∈ IN (e.g., v = 32) define the intervals Ij :=
[j2−v, (j +1)2−v) for j < 2v. For realistic modulus size m under mild conditions
Prob(Acmm∗(mod 1) | A ∈ Ii) ≈ 2−v should be an excellent approximation for
i, j < 2v. Then the left-hand side of (2) approximately equals Prob(Uc +V ≥ 1)
where U and V denote independent random variables being equidistributed on
[0, 1). The latter probability equals the right-hand side of (2).

112 Werner Schindler

Remark 2. We point out that the proof of (2) and (3) is not exact in a math-
ematical sense as it uses (though plausible!) heuristic arguments at two steps.
However, results from practical experiments (thousands of pseudorandom fac-
tors and various moduli) match perfectly with (2) and (3). For none of these
factors and moduli neither (2) nor (3) turned out to be wrong. Hence it seems
to be resonable to use “=” instead of “≈”.

Let n = p1p2 denote an RSA-modulus with primes p1 and p2 while d denotes
the secret exponent. Steps 1 to 3 below describe how to compute yd(mod n) us-
ing the CRT and Montgomery’s algorithm. The numbers d′, d′′, b1 and b2 and
the parameters for the Montgomery multiplications (mod p1) and (mod p2) are
precomputed in a setup Step carried out only once after loading (or generat-
ing within the device, resp.) p1, p2 and d. In particular, d′ := d(mod (p1 − 1))
and d′′ := d(mod (p2 − 1)) while b1 ≡ 1 (mod p1) and b1 ≡ 0 (mod p2), and
similarly, b2 ≡ 0 (mod p1) and b2 ≡ 1 (mod p2).

CRT using Exponentiation algorithm 1
Step 1: a) y1 := y(mod p1)

b) Compute x1 := (y1)d′
(mod p1) with Exponentiation algorithm 1

Step 2: a) y2 := y(mod p2)
b) Compute x2 := (y2)d′′

(mod p2) with Exponentiation algorithm 1
Step 3: Return (b1x1 + b2x2)(mod n)

3 General Assumptions and the Central Idea

We assume that the attacker has access to a hardware device (smart card, PC
etc.) which calculates the modular exponentiation with a secret RSA exponent
using CRT with Montgomery multiplication. Below, we will formulate and dis-
cuss assumptions concerning the implementation. Then we derive the main the-
orem and explain the central idea of our attack.

Definition 1. In analogy to Sect. 2 for i = 1, 2 we define the mappings
Ψi, Ψi∗: Z → Zpi by Ψi(a) := (aR)(mod pi) and Ψi∗(a) := (aR−1)(mod pi). As
usually, the greatest common divisor of integers a and b is denoted with gcd(a, b).
The term N(µ, σ2) denotes a normal distribution with mean (=expected value) µ
and variance σ2. A value taken on by a random variable X is called a realization
of X.

General Assumptions. a) The attacker is able to use the hardware device for
chosen inputs and to measure the total time needed for an exponentiation.
b) A modular exponentiation yd(mod n) is computed with the CRT using Ex-
ponentiation algorithm 1 stated at the end of Sect. 2.
c) The attacker knows the modulus n.
d) Both, Montgomery multiplications (mod p1) and (mod p2) use the same pa-
rameter value R.
e) Montgomery multiplications (mod p1) and (mod p2) require time c if no ex-
tra reduction is needed and c + cER otherwise.

A Timing Attack against RSA with the Chinese Remainder Theorem 113

f) Running times are reproducible, i.e. for fixed d and n the running time Time(yd

(mod n)) does only depend on the base y but not on other (e.g. external) influ-
ences.
g) For a randomly chosen base y the cumulative time needed for all operations
besides the Montgomery multiplications inside the loop of Exponentiation Algo-
rithm 1 in Steps 1 and 2 of the CRT algorithm (in particular, the time needed for
input and output operations, for the calculation of yi, Ψi(yi), Ψi∗(temp) (i = 1, 2)
and for b1x1 +b2x2(mod n)) may be viewed as realization of a N(µCRT, σCRT

2)-
distributed random variable.

Our attack is a chosen input attack which enables the factorization of the modu-
lus n. It will turn out that it tolerates measurement errors and external influences
and also works under less restrictive assumptions. In Sect. 7 it will be extended
to CRT combined with more advanced exponentiation algorithms than Expo-
nentiation algorithm 1. We will reference to the general assumptions using the
abbreviation GA.
Remark 3. (i) Re GA d): The assumption that both, exponentiation (mod p1)
and (mod p2) use the same parameter value R is usually fulfilled as both prime
factors have the same number of bits.
(ii)Re GA e): Reductions modulo a power of 2 and divisions by a power of 2
can simply be realized by neglecting the high-value bits or as a shift operation,
resp. Due to GA d) assumption GA e) usually should be fulfilled (see also [3]).
However, slight deviations from constant running times could be interpreted as
a part of the measurement error (see Remark 7).
(iii) Re GA f): Concerning external influences assumption GA f) should be
fulfilled for smart cards (but not for multi-user-systems). Instead, there might
be randomly chosen dummy operations masking the “true” running time (see
Remark 7).
To simplify further notation we will use the following abbreviations and defini-
tions

R−1 := R−1(mod n), β :=
√

n/R2 (4)
T (u) := Time((uR−1(mod n))d(mod n)) . (5)

The term T (u) covers all the time needed to compute (uR−1(mod n))d(mod n).
The CRT delivers (uR−1(modn))R ≡ u (mod pi) so that Theorem 1 is an
immediate corollary of Lemma 1. We recall that the right-hand sides of (6) and
(7) are at least excellent approximations. Theorem 1 is crucial for our attack.
Theorem 1. Let Bi denote a random variable being uniformly distributed on
Zpi . Then for i = 1, 2

pri∗ := Prob
(
extra reduction in Ψi∗(B2

i)
)

=
pi

3R
(6)

and, unless the ratio R/gcd(R, u(mod pi)) is extremely small, also

pri(u): =Prob
(
extra reduction in Ψi∗(Ψi(uR−1(mod n))Bi) = Ψi∗(uBi)

)
=

u(mod pi)
2R

for u ∈ Zn . (7)

114 Werner Schindler

Figures 1 and 2 below illustrate the central idea of our attack. For base
uR−1(mod n) hundreds of Montgomery multiplications have to carried out with
factors u(mod p1) and u(mod p2), respectively. ¿From (7) we conclude that the
probability for an extra reduction within any of these multiplication is linear
in the respective factor. Differences between running times required for modu-
lar exponentiations result from different numbers of extra reductions within the
respective modular multiplications and squarings. Figure 2 plots the expected
number of extra reductions (=E(#er)) as a function of u in a neighborhood of
kpi where k is an integer and i ∈ {1, 2}. Hence for u1 < u2 with u2−u1 � pi the
time difference T (u2)−T (u1) should reveal whether the interval {u1 +1, . . . , u2}
contains an integer multiple of at least one prime factor pi or not. In the first
case T (u1) should be significantly larger than T (u2) while in the second case
both running times should approximately be equal. In the following sections we
will make this intuitive idea precise.

-

6

!!!!!!!!!!

pi

pri(u)

0

u(mod pi)

Fig. 1. Probability for an extra re-
duction with a random cofactor

. - u

E(#er)(u)

0 kpi

6

���

���

Fig. 2. The expected number of ex-
tra reductions is discontinuous at
each integer multiple of pi.

Our attacks falls in three phases: In Phase 1 an “interval set” {u1+1, . . . , u2}
has to found which contains an integer multiple of p1 or p2. Starting from this
set in Phase 2 a sequence of decreasing interval subsets has to be determined,
each of which containing an integer multiple of p1 or p2. The decisions in Phase
1 and 2 are based on the respective time differences T (u2) − T (u1). As soon as
the actual subset is small enough Phase 3 begins where gcd(u, n) is calculated
for all u contained in this subset. If all decisions within Phase 1 and 2 were
correct then the final subset indeed contains a multiple of p1 or p2 so that Phase
3 delivers the factorization of n.

4 Basic Scheme

Let the exponent d′ be a (w1 +1) bit number with (g1 +1) ones in its binary rep-
resentation and similarly, the exponent d′′ be a (w2 +1) bit number with (g2 +1)
ones in its binary representation. Then within the for-loops of Exponentiation

A Timing Attack against RSA with the Chinese Remainder Theorem 115

algorithm 1 w1+w2+g1+g2 Montgomery multiplications are carried out, in par-
ticular, w1 of type Ψ1∗(temp2) and g1 of type Ψ1∗(temp ∗ Ψ1(y1)) and, similarly,
w2 of type Ψ2∗(temp2) and g2 of type Ψ2∗(temp∗Ψ2(y2)). For y = uR−1(mod n)
we will view the cumulative time needed for these Montgomery multiplications as
a realization of a N(µMM(u), σMM(u)2)-distributed random variable. The temp-
values are the intermediate results Ψi(yi), Ψi(y2

i), . . . , Ψi(yd
i) which behave as

realizations of random variables equidistributed on Zpi . Then (9) is an imme-
diate consequence of Theorem 1. We point out that extra reductions in subse-
quent Montgomery multiplications are negative correlated and that under mild
assumptions a pendant of the well-known central limit theorem also holds for
dependent random variables. (The first assertion follows from the fact that after
an extra reduction temp < (pi/R)pi or temp < (u(mod pi)/R)pi, resp.) Conse-
quently, due to GA g) the running time T (u) then may be viewed as a realization
of a N(µ(u), σ(u)2)-distributed random variable Xu with

µ(u) = µCRT + µMM(u), σ(u)2 = σCRT
2 + σMM(u)2 (8)

µMM(u) ≈ c

2∑
i=1

(wi + gi) + cER

2∑
i=1

(wipri∗ + gipri(u)) (9)

Theorem 2.

σMM(u)2 ≈ cER
2

2∑
i=1

[wipri∗(1 − pri∗) + gipri(u)(1 − pri(u)) (10)

+2(gi − 1)covi;MQ(u) + 2gicovi;QM(u) + 2(wi − gi)covi;QQ] with

covi;MQ(u) = 2pri(u)3pri∗ − pri(u)pr∗, covi;QM(u) =
9
5
pri(u)pr2i∗ − pri(u)pr∗,

covi;QQ =
27
7

pr4i∗ − pr2i∗ .

Proof. Using the same notation as in the proof of Lemma 1 the left-hand side of
(2) equals Prob(Ac + Acmm∗(mod 1) ≥ 1). As pointed out there slight devia-
tions in the first summand should cause “vast” variations in the second, i.e. with
respect to this particular probability both summands should behave as if they
were independent and if the second was equidistributed on [0, 1). Using (1) a sim-
ilar assertion can be derived for (3). Under these assumptions we may view the
temp values in Exponentiation algorithm 1 in Step i ∈ {1, 2} as realizations of
the random variables S0, S1, . . . which are recursively defined by S0 := Ψi(yi) and
Sk := (Sk−1Ψi(yi)/R + Vk) (mod 1) or Sk := (S2

k−1pi/R + Vk) (mod 1), resp., if
the kth Montgomery multiplication is a multiplication with Ψi(yi) or a squar-
ing, resp. Here V1, V2, . . . denote independent random variables being equidis-
tributed on [0, 1). Further, define the {0, 1}-valued random variables W1, W2, . . .
by Wk := 1{Sk<Sk−1Ψi(yi)/R} or Wk := 1{Sk<S2

k−1pi/R}, resp. Then Wk = 1 iff
an extra reduction is necessary in Montgomery multiplication k. As V1, V2, . . .
are independent and equidistributed on [0, 1) the same is true for S1, S2 If ν

116 Werner Schindler

denotes the distribution of Sg−1 (Dirac measure or equidistribution, resp.) then
for 1 ≤ g < h we obtain the covariance CovMQ(WgWh) =∫

[0,1)h−g+2
1{Sg<Sg−1Ψi(yi)/R}(sg) · 1{Sh<S2

h−1pi/R}(sh) dsh · · ·dsgν(dsg−1)

−
(∫

[0,1)2
1{Sg<Sg−1Ψi(yi)/R}(sg) dsgν(dsg−1)

)
·
(∫

[0,1)2
1{Sh<S2

h−1pi/R}(sh) dsh dsh−1

)
.

Here subscripts MQ means that index g belongs to a multiplication with Ψi(yi)
and h to a squaring. The covariance CovMQ(WgWh) = 0 if h > g +1 and equals
covi;MQ(u) if h = g + 1 > 2. Equivalent assertions hold for CovQM(WgWh),
CovMM(WgWh) and CovQQ(WgWh). Approximating the covariance of W1 and
W2 by covi;QM(u) or covi;QQ, resp., finishes the proof of Theorem 2 as the least-
value bits of d′ and d′′ are 1.

Remark 4. (i) The proof of Theorem 2 is not exact in a mathematical sense as
it uses the same heuristic arguments as Lemma 1. However, (10) matches with
practical experiments. We point out that the variance σMM(u)2 does not affect
the (single) decision rule defined below but its knowledge enables the choice of
appropriate parameters s and N (see Sect. 5 and 7).

Now let 0 < u1 < u2 < n with u2 − u1 < p1, p2. Three cases are possible:

Case A: {u1 + 1, . . . , u2} does not contain a multiple of p1 or p2.
Case B: {u1 + 1, . . . , u2} contains a multiple of one of p1 or p2 but not of both.
Case C: {u1 + 1, . . . , u2} contains a multiple of both p1 or p2.

Clearly, the expected value of the time difference T (u2)−T (u1) equals E(Xu2 −
Xu1) = µ(u2) − µ(u1). In Case B pj denotes the prime factor of which {u1 +
1, . . . , u2} contains a multiple. From (9) and Theorem 1 we obtain

E(Xu2 −Xu1) =

cER
2R (g1(u2 − u1) + g2(u2 − u1)) in Case A
cER
2R

(gj(u2 − u1 − pj) + g3−j(u2 − u1)) in Case B
cER
2R

(g1(u2 − u1 − p1) + g2(u2 − u1 − p2)) in Case C
(11)

unless the ratios R/gcd(R, u1(mod pi)) and R/gcd(R, u2(mod pi)) are extreme-
ly small. (For randomly chosen u1, u2 this should not never occur in practice.)
If u2 − u1 � p1, p2 the expected values differ considerably:

E(Xu2 − Xu1) ≈

0 in Case A
− cER

2R
(gjpj) in Case B

− cER
2R

(g1p1 + g2p2) in Case C.
(12)

Note that secret RSA exponents are chosen randomly. (In many applications
the public exponent is a fixed small value, e.g. 3 or 216 + 1. However, d may be
interpreted as a function of the randomly chosen prime factors p1 and p2.) It is
therefore reasonable to assume

A Timing Attack against RSA with the Chinese Remainder Theorem 117

Assumption 1. wi ≈ log2(pi) ≈ 0.5 log2(n) and, similarly, gi ≈ 0.5 log2(pi) ≈
0.25 log2(n) for i = 1, 2.

Example 1. Let n ≈ 0.7 · 21024 and R = 2512. If we assume pi/R ≈ β then
E(Xu2 − Xu1) ≈ −107 cER in Case B, and E(Xu2 − Xu1) ≈ −214 cER in Case
C.

The basic scheme of our attack is stated below. It will be completed in Sect. 5.
Note that −cER log2(n)β/16 ≈ 0.5[(E(Xu2 − Xu1 | Case A is true) + (E(Xu2 −
Xu1 | Case B is true)].

The attack — basic scheme
Phase 1: Choose an integer u with βR ≤ u < n and set (e.g.) ∆ := 2−6R

u2 := u, u1 := u2 − ∆

while
(
T (u2) − T (u1) > −cER

log2(n)β
16

)∗∗
do {

u2 := u1, u1 := u1 − ∆ }
Phase 2: while (u2 − u1 > 1000) do {

u3 := b(u1 + u2)/2c
if
(
T (u2) − T (u3) > −cER

log2(n)β
16

)
then u2 := u3(decision for Case A)

else u1 := u3 (decision for Case B or C)}
Phase 3: Compute gcd(u, n) for each u ∈ {u1 + 1, . . . , u2}.
** The attacker believes that Case A is correct

5 Error Probabilities, Error Detection, and Correction

In Sect. 4 we formulated the basic scheme of our attack. Next, we approximate
the probabilities that the attacker decides for Case A although Case B or C was
correct and, vice versa, that Case A was correct but the attacker decides for Case
B or C. Since we need not distinguish between Cases B and C we will restrict
our attention to the Cases A and B. Note that Case C is rather unlikely and if
it occurs the situation for the attacker obviously is even better than in Case B.

Decisions were based on time differences T (u2) − T (u1) (or, equivalently, on
T (u2)−T (u3), resp.) which we viewed as realizations of N(µ(u1)−µ(u2), σ(u1)2+
σ(u2)2)-distributed random variables Xu2 − Xu1 . Again we assume u2 − u1 �
p1, p2, and pj denotes the prime factor of which in Phase 2 a multiple is con-
tained in {u1 + 1, . . . , u2}. Clearly, as u2(mod pi) and u1(mod pi) (or u3(mod
pi), resp.) are not known we cannot compute the exact variances. Note that

u2(mod pj), u3(mod pj) ≈ 0 Phase 2, Case A (13)
u2(mod pj) ≈ 0, u3(mod pj) ≈ pj Case B (14)

which will be put in the respective variance and covariance terms of (10). Oth-
erwise the factor uk(mod pi) is not under control so that we approximate the
respective variance term pri(uk)(1 − pri(uk)) by its average value

2R

pi

∫ pi/2R

0

x(1 − x) dx =
pi

4R
− p2

i

12R2
. (15)

118 Werner Schindler

Then we approximate p1/R and p2/R by β. Similarly, the covariance terms
covi;MQ(uk) and covi;QM(uk) are approximated by their average values β4/48−
β2/12 and β3/20−β2/12. Further, using Assumption 1 elementary computations
lead to σMM(u1)2 + σMM(u2)2 (or, σMM(u3)2 + σMM(u2)2, resp.)

≈

log2(n)cER
2
(

11β
12

− 31β2

36
+ β3

10
+ 23β4

168

)
Phase 1, Case A

log2(n)cER
2
(

19β
24 − 47β2

72 + β3

20 + 13β4

112

)
Phase 2, Case A

log2(n)cER
2
(

11β
12 − 127β2

144 + β3

10 + 53β4

336

)
Case B .

(16)

As usually, let Φ(·) denote the cumulative distribution function of the N(0, 1)-
distribution. From (12) we derive the approximate average error probability for
a single decision

perr ≈ Φ

(
− cER log2(n)β

16
√

σ(u1|3)2 + σ(u2)2

)
. (17)

Example 2. If σCRT
2 is negligible average error probabilities (Phase 1, Case A;

Phase 2, Case A; Case B) are about
(i) 0.00094, 0.00097, and 0.00087 for n ≈ 0.7 · 21024 and R = 2512.
(ii) 0.00022, 0.00027, and 0.00021 for n ≈ 0.9 · 21024 and R = 2512.
(iii) 0.000005, 0.000005, and 0.000005 for n ≈ 0.7 · 22048 and R = 21024.

The error probability for a single decision decreases if the modulus n or the
parameter β increases. Although for realistic modulus size n the probability for
an erroneous decision is rather small we cannot be sure that all decisions within
an attack are correct. (Of course, in Phase 2 a large sequence of decisions for Case
A may be an indicator for an erroneous decision in the past.) However, at any
instant within Phase 2 we can verify with high probability whether our decisions
have been correct so far, i.e. whether the interval {u1 +1, . . . , u2} really contains
a multiple of p1 or p2. We just have to apply our decision rule from the basic
scheme in Sect. 4 to a time difference for neighbouring values of u1 and u2, resp.,
e.g. to T (u2 − 1) − T (u1 + 1). If this leads to the same decision it is confirmed
with overwhelming probability that the interval {u1 + 1, . . . , u2} truly contains
a multiple of p1 or p2. (Thus, we call {u1 + 1, . . . , u2} a confirmed interval.)
Otherwise, evaluate a third time difference. If the third decision confirms that
{u1 + 1, . . . , u2} contains a multiple of p1 or p2 then we have established a
confirmed interval after all. If not, we have to go back to the preceding confirmed
interval or at least to the first “close” decision thereafter to restart the attack
at this point with a neighbouring value ū of the one previously used. Anyway, it
is indispensable to complete the basic scheme by regular attempts to establish
confirmed intervals, the first at the beginning if Phase 2.

Now let suggestively denote perr;1A, perr;2A and perr;B the error probabilities
for a single decision in the various cases. If we choose the starting value u1

randomly, for ∆ = 2−6R Phase 1 requires (64β/3) + 1 time measurements on
average if all decisions are correct. An erroneous decision for Case B or C within

A Timing Attack against RSA with the Chinese Remainder Theorem 119

Phase 1 should (at a cost of 4 time measurements) immediately be detected
when trying to establish {u1 +1, . . . , u2} as a confirmed interval. If Case B or C
is correct (Phase 1 could end here!) an error costs some extra time measurements
but the attack will find a multiple of the other prime factor. Altogether, Phase
1 costs about

1 +
64β

3
(1 + 4perr;1A)(1 − perr;B)

∞∑
k=1

kpk−1
err;B = 1 +

64β

3
· 1 + 4perr;1A

1 − perr;B
(18)

time measurements. Now assume that the attacker wants to establish a confirmed
interval each time after s decisions. If s consecutive decisions after a confirmed
interval are correct it requires s + 2 (sometimes (s + 4)) time measurements to
establish the next confirmed interval. This event occurs with average probability
q̄ ≈ (1 − p̄err)s where p̄err = 0.5(perr;2A + perr;B). If any of the s decisions was
wrong the attacker has performed s + 4 time measurements “for nothing” as he
has to restart his attack from the preceding confirmed interval. Similar as above
one concludes that establishing a confirmed interval within Phase 2 costs about
(s + 4)/q̄ − 2q̄ time measurements. Consequently, on average the whole attack
(Phase 1 and Phase 2) needs about

1 +
64β

3
· 1 + 4perr;1A

1 − perr;B
+

0.5 log2(n) − 16
s

(
s + 4

q̄
− 2q̄

)
(19)

time measurements. The attacker should, of course, choose a parameter value s
for which (19) is minimal. If we assume that σCRT

2 is negligible for n ≈ 0.7·21024

and R = 2512, for example, the parameter s = 46 is optimal. The whole attack
then requires about 560 ≈ 0.55 log2(n) time measurements on average. Similarly,
for n ≈ 0.7 ·2512 (n ≈ 0.5 ·21024, n ≈ 0.9 ·21024, n ≈ 0.7 ·22048) for s = 11 (s = 22,
s = 91, s = 625) about 0.71 log2(n) (0.60 log2(n), 0.53 log2(n), 0.51 log2(n)) time
measurements are necessary. We did neither take the rare event into account that
it erroneously failed to establish a confirmed interval (due to two wrong verifying
decisions) nor that the preceding confirmed interval was erroneously established
(see Remark 5) as their influence on (19) is small.

Remark 5. (i) If it fails to establish a confirmed interval at a certain stage of
the attack for the third time it seems to be likely that the preceding confirmed
interval had erroneously been confirmed (rare event!). To avoid a deadlock one
simply jumps back to the last one confirmed interval.
(ii) Neighbouring values of the optimal parameter s do not yield considerably
worse results.

Remark 6. In Phase 2 of our attack we successively recover the binary represen-
tation of an integer multiple of one prime factor pj. If the attacker starts with
u1 ∈ [βR, R] it is likely (for β >

√
0.50 it is sure) that he will find pj rather than

a multiple of it. Indeed, if the attacker knows at least 0.25 log2(n) high-order bits
of pj he may refrain from further time measurements but compute the remain-
ing bits with a lattice-based algorithm introduced in [2] (Sect. 10 and 11). Its

120 Werner Schindler

running time is polynomial in log2(n). Making use of Coppersmith’s algorithm
obviously nearly halves the number of time measurements. As u(mod pj) = u
for u < pj due to (7) we recommend to avoid values u1, u2, u3 which are multiples
of large powers of 2.

Remark 7. (i) As the terms Ψi(yi) and Ψi∗(temp) usually are interpreted as
Montgomery multiplications with factors a′ := yi and b′ := R2(modpi) (pre-
computed value!) and a′ := temp and b′ := 1, resp., their cumulative vari-
ance is negligible. The variance of the reductions y 7→ y(modpi) (e.g. com-
puted with Barrett’s reduction algorithm) and of the final CRT computation
b1x1 + b2x2(modn) depends on the chosen algorithms but should be small in
general.
(ii) So far we have tacitly assumed that the attacker is able to measure the
running times exactly. A N(0, σErr

2)-distributed random measurement error in-
creases the variance of Xu2 −Xu1 by 2σErr

2 which in turn increases error proba-
bility. Similarly, approximately normally distributed random external influences
(or, equivalently, randomly chosen dummy operations) increase the variance of
Xu2 − Xu1 by 2σExt

2.
(iii) If σErr

2 + σExt
2 + σCRT

2 is not negligible this does not prevent our at-
tack. In fact, E(Xu2 − Xu1) and thus the decision rule remains unchanged and
(17) remains valid. (Of course, if γ := 2(σErr

2 + σExt
2 + σCRT

2)/(σMM(u1|3)2 +
σMM(u2)2) is too large the attack may become practically infeasible.) Anyway,
the attacker has to establish more confirmed intervals. For n ≈ 0.7 · 21024,
R = 2512 and γ = 1.0, e.g., using s = 11 requires about 730 time measurements.
For large γ it may be necessary to apply sequential sampling methods (see Sect.
7) or at least to apply the decision rule from the basic scheme at each step sepa-
rately to three time differences, e.g. to T (u2)−T (u1), T (u2 +1)−T (u1− 1) and
T (u2 +2)−T (u1 −2) (reuse existing time measurements!). The attacker decides
for the majority of these (pre-)decisions which doubles to triples the number of
time measurements while the probability for a wrong decision decreases from
perr to (3 − 2perr) ∗ perr

2.

6 Experimental Results

We implemented modular exponentiation with CRT and Montgomery multi-
plication in software. Output was the total number of extra reductions within
the Montgomery multiplications. (Recall that we are only interested in time
differences.) This scenario corresponds to a “real” timing attack where σ2

Err +
σ2

Ext+σCRT
2 is negligible since then differences in running times are proportional

to differences in the respective numbers of extra reductions. Note that the error
probabilities then do not depend on the constants c and cER. Hence its efficiency
does not depend on specific hardware characteristics of the attacked device.

We carried the attack through for various 1024 bit moduli with randomly
chosen primes ∈ [0.8, 0.85]∗2512, private key d = 3−1(mod (p1−1)(p2−1)), and
R = 2512. We always started our attack with u = 2R. We used the basic scheme

A Timing Attack against RSA with the Chinese Remainder Theorem 121

introduced at the end of Sect. 4. Additionally, we established confirmed intervals
at the beginning of Phase 2 and then always after 42 decisions. If it failed to
establish a confirmed interval at the same stage of the attack for the third time
we restarted the attack from the last but one confirmed interval (see Remark
5). On average, about 570 time measurements were needed to carry through
an attack. All attacks were successful. We did not make use of Coppersmith’s
algorithm mentioned in Remark 6. Coppersmith’s algorithm would have reduced
the average number of time measurements to about 300.

7 Extension to Advanced Exponentiation Algorithms

Many RSA-implementations use more efficient exponentiation algorithms than
square and multiply (see e.g. [Mov], Sect. 14.6.1). Therefore, usually b-bit-tables
(b > 1) are generated which contain powers of the respective base. Combined
with CRT and Montgomery’s algorithm b-bit table i (i = 1, 2) stores Ψi(v)(=
u(modpi)), Ψi(v2), . . . , Ψi(v2b−1) with v = uR−1(modn), or at least a subset
of these values. Using a b-ary exponentiation scheme ([Mov], Alg. 14.82 and
14.83) b modular squarings are accompanied by only one multiplication with a
table entry. Our attack can be extended to those table methods. The underlying
idea is simple but due to lack of space we can only sketch the technical details.
For the sake of efficiency we recommend to make use of Coppersmith’s algorithm.

For b-ary exponentiation schemes the essential part of the exponentiation
(uR−1)d(mod n) requires about log2(n) − 2 squarings and log2(n)/b2b+1 Mont-
gomery multiplications with both u(modp1) and u(modp2). Additionally,
log2(2

b − 2)/b2b multiplications with Ψi(vk) are necessary where (i, k) range
through {1, 2} × {2, . . . , 2b − 1}. If the table entries are calculated straight-
forward, i.e. if Ψi(vk+1) = Ψi∗(Ψi(vk)Ψi(v)) for k = 2, . . . , 2b − 1 ([Mov], Alg.
14.82), then this additionally costs 2b−3 Montgomery multiplications with both
u(modp1) and u(modp2). (Concerning the probability for an extra reduction
the computation of Ψi(v2) = Ψi∗(Ψi(v)2) should be viewed as a squaring.)

As the standard variant (attacking the square and multiply exponentiation
scheme) also the extended version exploits time difference T (u2) − T (u1). A
careful computation yields

E(Xu2 − Xu1) ≈

0 in Case A
− cERpi

2R

(
log2(n)
b2b+1 + 2b − 3

)
in Case B

−2 cERpi

2R

(
log2(n)
b2b+1 + 2b − 3

)
in Case C.

(20)

Assuming pi/R ≈ β we derive the following predecision rule: Decide for case A
iff T (u2) − T (u1) < −0.25cERβ

(
log2(n)
b2b+1 + 2b − 3

)
.

Similarly as in (10) we first express σMM(u)2 as a sum of variances and
covariances. Especially, covi;MM(u) = 4pri(u)3−pr2∗i with average value β3/24−
β2/12. Note that the particular variances and covariances equal the expressions
in (10) with Ψi(vk)/2R instead of pri(u). As in Sect. 5 we approximate these

122 Werner Schindler

variance and covariance terms in σMM(u1|3)2 +σMM(u2)2 by their average values
unless Ψi(vk) = uk(mod pj) where we use (13) and (14). For simplicity we again
assume that σCRT

2 is negligible. Then for n ≈ 0.7 · 21024, R = 2512 and b = 2,
for example, we obtain approximate error probabilities 0.204 (Phase 1, Case A),
0.204 (Phase 2, Case A), and 0.204 (Case B).

To perform a successful attack, however, we need more trustworthy decisions.
Therefore we apply the predecision rule to several time differences T (u2(1)) −
T (u1(1)), T (u2(2))−T (u1(2)), . . . where u1(1), u1(2), . . . and u2(1), u2(2), . . . denote
arbitrary bases (if possible, reuse existing time measurements) within intervals
I1 and I2 around the lower and the upper bound of the interval [u1, u2) (or
[u3, u2) within Phase 2 of our attack, resp.). (As we use Coppersmith’s algorithm
u2 − u1, u2 − u3 ≥ R0.5 the interval lengths may be chosen fairly large.) To
minimize the number of time measurements we use sequential sampling. That
is, we proceed applying our predecision rule until the number of predecisions
for Case A and the number against Case A differ by a fixed integer N > 1.
Our decision rule, of course, is to accept the majority of these predecisions.
The probability for a wrong decision and the expected number of predecisions
follow from formulas 2.4 and 3.4 in Chap. XIV of [4]. (Therefore we interpret the
decision procedere as a gambler’s ruin problem with initial capital N . A wrong
predecision reduces, a correct predecision increases the capital by 1 unit.) For
our example we choose N = 3 which leads to approximate error probabilities
for a single decision perr,1A ≈ 0.017, perr,2A ≈ 0.017 and perr,B ≈ 0.016. The
expected number of predecisions needed per decision is about 6.0 in all cases.

The attack itself is organised as in Sect. 4 and 5. Replacing the nominator
“0.5 log2(n)−16” of (19) by “0.25 log2(n)−6” (we use Coppersmith’s algorithm),
choosing a parameter s minimizing this term (in our example, s = 10) and mul-
tiplying the obtained result by the average numbers of predecisions yields a
first estimate for the total number of time measurements needed for our attack
(=1920 in our example). However, decisions which are not used to establish a
confirmed interval reuse existing time measurements. Of course, if the respective
earlier decision had needed fewer predecisions this obviously costs some addi-
tional time measurements. (Its mean value may be derived from the generating
function for the number of predecisions needed for one decision ([4], Sect. XIV.4)
or simply be estimated with a stochastic simulation.) In our example we have
to augment the number of time measurements from 1920 to about 2320. For
b = 3, b = 4 and b = 5 altogether about 11160 (with N = 5 and s = 5), 17700
(with N = 7 and s = 6), 7050 (with N = 4 and s = 5) time measurements,
resp., are necessary if again n ≈ 0.7 · 21024 and R = 2512. The last result may be
surprising at first sight but for b = 5 computing the tables entries requires 29
multiplications with both u(mod p1) and u(mod p2).

To improve efficiency at least for b = 5 a modified b-ary exponentiation may
be used ([Mov], Alg. 14.83) which only stores Ψi(yk) for odd exponents k. Build-
ing up table i costs 2b−1 − 1 multiplications with Ψi(v2) and one squaring with
Ψi(v). For b = 5 (and n ≈ 0.7 · 21024) the attack requires about 28200 time
measurements. For b = 4 the situation for the attacker is more comfortable than

A Timing Attack against RSA with the Chinese Remainder Theorem 123

in the non-modified case since on average about 32 Montgomery multiplications
with both u(mod p1) and u(mod p2) are carried out. About 7250 time measure-
ments should be sufficient. We finally remark that sliding window exponentiation
([Mov], Alg.14.85) can be attacked with similar methods.

8 Fields of Application

As our attack requires chosen input it cannot used be used to attack signature
applications with fixed padding. Our attack works, however, if the attacker can
choose the complete base y provided that there is no integrity check at all or if
random padding bits are used (to prevent the Bellcore attack ([1])), eventually
combined with mild integrity conditions (e.g. given by two information bytes).
If the attacker then would like to measure T (u) he first uses a PC or a laptop to
determine the integer z with smallest absolute value such that (u + z)R−1(mod
n) meets the integrity condition. Then he measures T (u + z) instead of T (u).

However, our attack can always be applied if yd(mod n) decrypts a secret
message y := re(modn) where e denotes the public key of the recipient. (The
message r might contain a symmetric session key, for example.) Of course, the
integrity of r cannot be checked until the exponentiation yd(modn) has been
carried out. However, we are not interested in yd(modn) itself but in the re-
spective running time (eventually inclusive an integrity check). Hence we do not
need to care about integrity conditions.

9 Countermeasures

The most obvious way to prevent our attack is to carry out an extra reduction
within each Montgomery multiplication (if not needed by the algorithm then as a
dummy operation). Alternatively, provided that R is sufficiently large (compared
with the moduli pi) the extra reduction step may be missed out entirely ([10,5]).
In fact, the intermediate results of the respective exponentiation algorithm then
are bounded by 2pi and the reduction will be automatically carried out within
the final operation temp 7→ Ψi∗(temp). Using any of these countermeasures, of
course, it has to be taken care that eventual time differences caused by the
remaining arithmetical operations do not reveal the factorization of n or the
secret exponent d.

A more general approach to prevent timing attacks is to use blinding tech-
niques ([6], Sect. 10). Instead of yd(modn) the device then internally com-
putes (yha(modn))d(mod n), followed by a modular multiplication with hb :=
h−d

a (mod n). To protect the blinding factors ha and hb themselves against tim-
ing attacks they are updated before the next exponentiation via ha 7→ h2

a(mod
n) and hb 7→ h2

b(mod n).

124 Werner Schindler

10 Concluding Remarks

In this article we introduced and investigated a new type timing attack which
works if RSA exponentiation with the secret exponent uses CRT and Mont-
gomery’s algorithm. Our attack is very efficient and (at the expense of efficiency)
tolerates measurement errors and variance caused by arithmetical operations be-
sides the Montgomery multiplications or external influences. The central idea of
our attack may also be transferred to CRT implementations using other multi-
plication algorithms than Montgomery’s provided that mean or variance of the
time needed for a multiplication of u ∈ Zpi with a randomly chosen cofactor
is significantly different for u ≈ 0 and u ≈ pi. As a consequence, also for RSA
applications using the CRT either constant running times or blinding techniques
are indispensable.

Acknowledgement

The author wants to thank the referees for valuable comments and suggestions
which helped to improve the presentation of this paper.

References

1. D. Boneh, R.A. Demillo, R.J. Lipton: On the Importance of Checking Crypto-
graphic Protocols for Faults. In: W. Fumy (ed.): Advances in Cryptology — Eu-
rocrypt ’97, Lecture Notes in Computer Science, Vol. 1233. Springer, New York
(1997) 37–51.

2. D. Coppersmith: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10 (no. 4) (1997) 233–260.

3. J.-F. Dhern, F. Koeune, P.-A. Leroux, P.-A. Mestré, J.-J. Quisquater, J.-L.
Willems: A Practical Implementation of the Timing Attack. In: J.-J. Quisquater,
B. Schneier (eds.): CARDIS 1998, Third Smart Card Research and Advanced Ap-
plication Conference (PreProceedings). Université catholique de Louvain (1998).

4. W. Feller: An Introduction to Probability Theory and Its Applications (Vol. 1).
3rd edition, revised printing, Wiley, New York (1970).

5. G. Hachez, J.-J. Quisquater: Montgomery Exponentiation with no Final Subtrac-
tions: Improved Results. To appear in: Ç.K. Koç, C. Paar (eds.): Workshop on
Cryptographic Hardware and Embedded Systems, 2000 (Proceedings).

6. P. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In: N. Koblitz (ed.): Advances in Cryptology – Crypto ’96, Lecture
Notes in Computer Science, Vol. 1109. Springer, Heidelberg (1996), 104–113.

7. A.J. Menezes, P.C. van Oorschot, S.C. Vanstone: Handbook of Applied Crypto-
graphy. CRC Press, Boca Raton (1997).

8. P.L. Montgomery: Modular Multiplication without Trial Division. Math. Comp.
44 (no. 170) (1985) 519–521.

9. W. Schindler: Optimized Timing Attacks against Public Key Cryptosystems. Sub-
mitted.

10. C.D. Walter: Montgomery’s Exponentiation Needs no Final Subtractions. Elec-
tronics letters 35 (no. 21) (1999), 1831–1832.

	Introduction
	Montgomery's Algorithm and the CRT
	General Assumptions and the Central Idea
	Basic Scheme
	Error Probabilities, Error Detection, and Correction
	Experimental Results
	Extension to Advanced Exponentiation Algorithms
	Fields of Application
	Countermeasures
	Concluding Remarks

