
Password Authenticated Key Agreement for
Contactless Smart Cards

Markus Ullmann1, Dennis Kügler1, Heike Neumann2, Sebastian Stappert2, and
Matthias Vögeler2

1 Bundesamt für Sicherheit in der Informationstechnik,
Markus.Ullmann@bsi.bund.de, Dennis.Kuegler@bsi.bund.de,

WWW home page: http://www.bsi.bund.de
2 NXP Semiconductors,

Business Line Identification
Heike.Neumann@nxp.com, Sebastian.Stappert@nxp.com,

Matthias.Voegeler@nxp.com,
WWW home page: http://www.nxp.com

Abstract. This paper describes and compares the usage of password-
based authenticated key agreement protocols to establish a secure com-
munication channel between terminal and contactless card. In particu-
lar, protocols of this kind are discussed for use in contactless ID cards.
The aim of this paper is to discuss, for the first time, two cryptographic
password-based protocols with respect to security, implementation efforts
and performance. Furthermore, a real life implementation on NXP’s high
security SmartMX chip is presented.

1 Introduction

1.1 Security Requirements

The most significant security attack concerning contactless smart cards is the
communication between an attacker’s terminal and the card without the knowl-
edge of the cardholder, while he carries the contactless card in his pocket. This
attack is possible, even with passive contactless smart cards within the activa-
tion distance of the contactless card. In this context ”passive” means that the
smart card has no electrical power supply (e.g. battery). Regarding contactless
smart cards (PICC) and terminals (PCD) according ISO/IEC 14443 [15–18],
the real activation distance depends on technical quantities such as terminal
power, terminal antenna coil and antenna diameters of terminal and card [12].
Measurement results are published in [11].

Besides that, an adversary might eavesdrop an existing radio frequency data
transmission between terminal and contactless card. Again, in the case of con-
tactless smart cards and terminals with an ISO/IEC 14443 interface the real
range for eavesdropping a communication depends on technical quantities such
as magnetic field strength, signal to noise ratio, noise class [13] etc. [12]. Consid-
ering noise level issues [13] the maximum range for eavesdropping the commu-
nication of a contactless smart card (PICC) is below 3 meters. This means, an

2

adversary has to be relatively close with his antenna to successfully collect the
communication data. To address the security risks mentioned, specific security
mechanisms are needed. They have to fulfill following security requirements to
resist these security threats:

– authentication of terminals
– strong session key agreement between authenticated terminal and contactless

card (for the establishment of secure channels)
– forward secrecy of the session keys

The Basic Access Control Protocol (BAC) is the first approach which ad-
dresses the security requirements mentioned. This cryptographic protocol was
developed (for first generation of e-passports, electronic travel documents con-
taining facial images) to protect personal data from unauthorized access. The
whole specifications of electronic travel documents are standardized by the In-
ternational Civil Aviation Organization (ICAO), see [1–3]. On the one hand it
describes how to implement data structures and commands. On the other hand it
specifies the realization of authenticity, integrity and confidentiality of the elec-
tronic data stored on the radiofrequency chip embedded in the travel document.
The access of a terminal to the contactless card itself and any data group on the
card require at least the successful execution of the BAC protocol. A success-
ful run of the BAC protocol itself requires knowledge of the Machine Readable
Zone (MRZ), which is printed on the inner surface of the passport. The terminal
needs this information to calculate the passport specific BAC authentication key
to perform a successful BAC protocol run. Thus, without opening the passport,
no data group can be read from a terminal.

Overall, the BAC protocol and its technical realization have some limitations:

– The entropy of the derived symmetric keys is in general less than 73 bits (in
some cases less than 56 bits) and thus does not prevent eavesdropping at all

– The BAC authentication key is static

Calculating the BAC authentication key from an eavedropped session is techni-
cally possible, but this still requires more effort than to obtain the personal data
of the e-passport from other sources.

In order to overcome the first limitation, new password-based cryptographic
protocols are discussed for an authenticated connection establishment between
terminals and contactless cards. This idea goes back to advice of the BSI, first
published as Password Authenticated Connection Establishment (PACE) in [9].

The second limitation is beyond the scope of this paper. This limitation and
a technical solution are discussed in detail in [14].

1.2 Password-based Cryptographic Protocols

The basic idea of password-based cryptographic protocols is to combine a strong
session key agreement with an implicit entity authentication based on a shared
secret with limited entropy, called a password, in one cryptographic protocol.

3

The initial idea goes back to Bellovin and Merret and their publication of the
Encrypted Key Exchange protocol (EKE) [10]. Beyond the security requirements
mentioned in subsection 1.1, password-based protocols themselves have to fulfill
further security properties.

At first, if passwords with low entropy (e.g. passwords with 6 numeric charac-
ters) are considered, one boundary condition is the possibility that an adversary
can search through all secret passwords in a reasonable time. Now, off-line and
on-line dictionary attacks should not feasible.

1. Off-line dictionary attack: This means, that a passive eavesdropper who
records one or more protocol runs cannot get any information concerning
password used for these protocol runs; in particular, he cannot calculate the
password based on the protocol transcripts

2. On-line dictionary attack (1): This means that an active adversary cannot
abuse the protocol so as to eliminate a significant number of possible pass-
words

3. On-line dictionary attack (2): This means that an active adversary can only
test one password per protocol run by attempting to masquerade using this
password

For example, EKE is vulnerable to on-line dictionary attack (2). Bellovin
and Merrit introduced the notion of partition attacks against EKE. After en-
forcement of multiple decryption runs with distinct passwords, passwords can
be separated into partitions of valid and invalid sets. Invalid passwords can be
discarded. In order to make partition attacks harder, a lot of ideas were sug-
gested. In succession, variants of password-based protocols were developed and
discussed for client-server authentication since the first work of Bellovin and
Merret. A good compendium on published password-based protocols is to be
found on [19].

In this paper we present and discuss two different password-based proto-
cols for the establishment of authenticated radio frequency connections between
terminal and contactless card, the Password Authenticated Connection Estab-
lishment (PACE) [9] and TC-AMP. PACE was exclusively designed for the es-
tablishment of authenticated channels between terminals and contactless cards.
In contrast, TC-AMP is a reduction of TP-AMP [4] intended for the aforemen-
tioned purpose, and is first published and discussed within this paper.

Both fulfill the requirements mentioned in subsection 1.1, as well as being
suitable for use with elliptic curve cryptography, which is the preferred approach
for asymmetric cryptography on resource limited hardware such as contactless
smart cards.

1.3 Structure of the Paper

The aim of section 2 is to describe the PACE protocol from different perspectives:
protocol steps, implementation effort, performance and security. Here, only a
security argumentation is given. A formal logic and cryptographic proof are

4

beyond the scope of this paper. These issues are still to be found. In section 3 the
protocol TP-AMP is presented first. Moreover, this section presents a reduction
of TP-AMP (called TC-AMP), a brief security analysis and an implementation
of TC-AMP. Finally, in section 4 a comparison of both protocols and a forecast
is given.

1.4 Used Notation

Abbreviation Semantics

< G > cyclic group
G, G′ elliptic curve base point
Γ, A, B, K, M, P, Q, T, X1, X2, Y1, Y2 elliptic curve point
Ax, Bx, Mx, Qx x-coordinate of the curve point
π shared short secret (password) with limited

entropy
ZZ∗

n multiplicative group of n
x, x1, x2, y, y1, y2 random value ∈ ZZ∗

n

s random secret
ki, skC , skS , µ symmetric key
kEnc symmetric key for encryption
h(), hi() strong hash function
ENC() symmetric encryption algorithm
DEC() symmetric decryption algorithm
MAC() Message Authentication Code calculation
kMAC symmetric key for MAC calculation
PCD terminal
PICC contactless smart card

Fig. 1. Abbreviations

The terms terminal and reader are used in this paper as synonyms.

2 Password Authenticated Connection Establishment
(PACE)

2.1 Protocol Description

The PACE protocol, see [9], is adaptable for prime fields and elliptic curves.
Here, in order to increase the performance we want to adapt the protocol such
that it uses elliptic curves.

First, the communication partners (terminal and smart card) of course have
to agree on an elliptic curve E and base point G. The operations are then
performed in the cyclic group < G >:= {t ∗ G|t ∈ IN}, n := | < G > |. In the

5

following, < G >∗ denotes the cyclic group < G > without the point at infinity.
A practical method is the use of published secure domain parameter of a trusted
authority, see [5].

A PACE protocol run starts with the selection of a random number s 0 ≤ s <
2m) by the smart card in step (a). m is defined as the block size of the blockcipher
used for the encryption of s. Next, the smart card derives a key µ using a key
derivation function, here h(π|1) is used. In the next step s is encrypted using a
blockcipher with key µ, z = ENC(µ, s), and z is then transmitted to the terminal.

Afterwards, the terminal decrypts z and terminal and card enforce a first
anonymous Diffie Hellman key agreement using the base point G with the result
P (steps (e) - (i)). Thereupon, P is exclusively used to calculate a new base
point G′ by using s in step (j) for the subsequent Diffie Hellman key agreement.
Now, the second anonymous Diffie-Hellman key agreement is performed to cal-
culate a common secret curve Point K (steps (k) - (o)). Then, two different keys
kENC = h(Kx|1) for encryption and kMAC = h(Kx|2) for calculation of Mes-
sage Authentication Codes (MAC) are derived from K. First, kMAC is used for
a MAC-calculation in step (p) and (q) performed as mutual authentication of
terminal and card in steps ((r) - (u)).

After a successful PACE protocol run, Secure Messaging is started using the
derived keys kENC and kMAC.

2.2 Security of PACE

It is important to appreciate that π is a static secret with low entropy. That
means an adversary knows in principle the whole set of possible passwords π.

The security of PACE strongly depends on the Diffie-Hellman assumption
and the secrecy of the password π. Assuming that P and K are calculated based
on random values and are erased after each PACE protocol run, PACE provides
strong forward secrecy.

However, a passive adversary can eavesdrop a PACE protocol and gets z
very easily. Knowing the whole set of πi he can calculate µi = h(πi|1) and
subsequently si = DEC(µi, z). However, that does not help to disclose any
information concerning π. This means, off-line attacks to disclose π are not
feasible.

An active attacker (terminal) without knowing the password π is able to ac-
tivate a card. The card operates normally, and chooses s randomly and sends
z. The terminal goes on with the PACE protocol and terminal and card enforce
the first anonymous Diffie-Hellman key agreement. Now, the attacker knows
only P . Up to now, he cannot disclose s. So, only the card is able to calcu-
late G′. Assuming we leave out the protocol steps (k) - (o) and use already G′

instead of K for the calculation of kMAC . Furthermore, the authentication of
the card in step (r) takes place prior to the authentication of the terminal in
step (q). Now, the attacker can use all si (si = DEC(µi, z)) to calculate the
corresponding G′

i = si ∗ G + P . Next, he calculates the related kMACi
enforce

a brute force attack tPICCi
= MAC(kMACi

, X1,x) and compares the values
with tPICC = MAC(kMAC , X1,x). Equality of tPICC = MAC(kMAC , X1,x) and

6

terminal (PCD) smart card (PICC) Step

choose 0 ≤ s < 2m randomly (a)
µ = h(π|1) mod n µ = h(π|1) mod n (b)

z = ENC(µ, s) (c)
z←−−

s = DEC(µ, z) (d)
choose x1 ∈ ZZ∗

n randomly (e)
X1 = x1 ∗G (f)

X1−−−→
choose y1 ∈ ZZ∗

n randomly (g)
Y1 = y1 ∗G (h)

Y1←−−−
P = x1 ∗ Y1 P = y1 ∗X1 (i)
G′ = s ∗G + P G′ = s ∗G + P (j)
choose x2 ∈ ZZ∗

n randomly (k)
X2 = x2 ∗G′ (l)

X2−−−→
choose y2 ∈ ZZ∗

n randomly (m)
Y2 = y2 ∗G′ (n)

Y2←−−−
K = x2 ∗ Y2 K = y2 ∗X2 (o)
kMAC = h(Kx|2) kMAC = h(Kx|2) (p)
tPCD = MAC(kMAC, Y2,x) (q)

tPCD−−−−−→
tPICC = MAC(kMAC, X2,x) (r)

tPICC←−−−−−
t′PCD = MAC(kMAC, Y2,x) (s)
abort if t′PCD 6= tPCD (t)

t′PICC = MAC(kMAC, X2,x) (u)
abort if t′PICC 6= tPICC (v)

Fig. 2. PACE

7

tPICCi
= MAC(kMACi

, X1,x) disclose kMACi
, first, G′

i, second, s, third and
π last. Now, the need of the second anonymous Diffie-Hellman key agreement
becomes clear. It cuts off active attacks.

On-line dictionary attacks (1) are not possible because of the election of
0 ≤ s < 2m with m defined as block size of the used blockcipher.

Of course an active attacker is able to perform an on-line dictionary attack
(2). In order to prevent this kind of guessing attack, technical countermeasures
are possible as described in chapter 3.2.

2.3 Implementation of PACE

This section describes details of the implementation of the PACE protocol.
For the performance analysis described in subsection 2.4 a PACE implemen-

tation on NXP’s smart card controller SmartMX was developed. This implemen-
tation is based on NXP’s certified crypto library on the SmartMX. This section
contains, beside the description of the basic crypto functionality needed, the
ISO/IEC 7816 command mapping.

For the implementation of PACE the elliptic curve domain parameters brain-
poolP224r1 from [5] have been chosen. For the encryption of the random value
s using key µ a 3-DES encryption in ECB-Mode was used (cf. [8]).

The implementation of PACE uses the following basic cryptographic func-
tionality:

1. EC key generation in step (j) of figure 5 for s ∗G,
2. EC Diffie-Hellman key exchange (also used for elliptic curve scalar point

multiplication) in steps (h), (i), (n) and (o),
3. EC point addition in step (j),
4. 3-DES encryption, ECB/CBC mode in steps (c), (r) and (s).

The cryptographic functions for the native implementation have been written
in the programming languages C and Assembler, the implementation is analyzed
in the next section.

ISO7816 Commands The following sequence of ISO 7816 commands is used
to implement PACE:

1. MSE:Set AT
2. General Authenticate

(a) Encrypted Nonce
(b) Map Nonce
(c) Perform Mutual Key Agreement
(d) Mutual Authenticate

The command General Authenticate is divided into the above four sub-
commands. Table 1 provides the ISO/IEC 7816 command mapping that has
been used, for more details see also [9].

8

Table 1. ISO/IEC7816 Command Mapping

MSE: Set AT

CLA/INS/P1/P2 Data LE
C-APDU 00 22 C1 A4 80 01 11 83 01 02 —

SW Data
R-APDU 90 00 —

General Authenticate: Encrypted Nonce

CLA/INS/P1/P2 Data LE
C-APDU 10 86 00 00 22

SW Data
R-APDU 90 00 80 20 Encrypted Nonce

General Authenticate: Map Nonce

CLA/INS/P1/P2 Data LE
C-APDU 10 86 00 00 81 39 04 Ephemeral Public Key 3B

SW Data
R-APDU 90 00 82 39 04 Ephemeral Public Key

General Authenticate: Perform Mutual Key Agreement

CLA/INS/P1/P2 Data LE
C-APDU 10 86 00 00 83 39 04 Ephemeral Public Key 3B

SW Data
R-APDU 90 00 84 39 04 Ephemeral Public Key

General Authenticate: Mutual Authenticate

CLA/INS/P1/P2 Data LE
C-APDU 00 86 00 00 85 08 Authentication Token 0A

SW Data
R-APDU 90 00 86 08 Authentication Token

9

Fig. 3. Processing of the PACE protocol

2.4 Performance Analysis of PACE

For the results in this section a measurement setup as described in appendix A
has been used.

Figure 3 shows the execution of the PACE protocol as it has been described in
section 2.1 on NXP’s SmartMX. As a whole the protocol consists of 5 Command-
and Response-APDUs.

The green peaks pointing down indicate communication from PCD to PICC,
the blue peaks pointing up indicate communication from PICC to PCD. So
between a green and a blue peak the smart card is processing a Command-
APDU.

In figure 3 four phases are marked with Roman numerals (I) to (IV). The
next description gives the relation between the outline of PACE from figure 2
and the real implementation shown visually in figure 3.

Phase (I) In this phase the smart card performs steps (a) to (c) and the first
part of step (j). Step (a) and the first part of (j) is just realized by performing

10

an elliptic curve key generation. Note, that step (b) can be omitted if a static
password π is used.

Phase (II) In the second phase the smart card performs steps (g) and (h) by
doing an elliptic curve key generation, and step (i) by performing an elliptic
curve Diffie-Hellman key exchange, and finally the second part of step (j) is
computed the elliptic curve point addition.

Phase (III) In this phase the smart card computes steps (m) to (o) by do-
ing two elliptic curve Diffie-Hellman key exchanges. Also, step (p), the key
derivation, is performed.

Phase (IV) Finally only steps (r) to (t) are performed, i.e. computing and
checking the MACs.

The total execution time of the PACE protocol is about 945 ms, where the
time consumption for the contactless communication is only about 32ms (3.3%).
Most of the time, about 677 ms (71.6%), is used for the operations on the smart
card.

The power consumption increases significantly when the FameXE, the co-
processor for asymmetric cryptography on the SmartMX, is used. It is possible
to detect the two elliptic curve key generations and three elliptic curve scalar
point multiplications, which are performed by PACE, in figure 3.

3 TP-AMP

In [4] T. Kwon introduced a new efficient three-pass password authenticated
key agreement protocol which is proven to be secure under the Diffie-Hellman
intractability assumption in the random-oracle model. This protocol is discussed
for the use in general server/client environments and the author also pointed out
that this new protocol was contrived to resist server compromise.

For the protocol, the client (C) and Server (S) have to agree on Diffie-Hellman
key agreement parameters, i.e. on primes p, q, where q divides p− 1 and on an
element g with order q in ZZ∗. Let hi(.) = h(i|.|i), where h is a strong one-way
hash function, i is an integer. Furthermore, let Hi(.) = ζhi(.) mod p with another
generator ζ.

In the registration phase a user chooses a name C and a password π which are
stored in the server as well. Then for the protocol the server and the client derive
some values from these parameters: γ = H0(C|π), γ′ = γ−1 mod p, u = h1(C|π)
and ν = gu mod p. If the protocol as described in figure 4 has been successfully
executed, both parties derive session keys, the server computes skS and the client
skC .

Figure 4 shows the execution of the protocol.
It is obvious that α and β correspond to the shared secret that is computed

on both sides of the protocol. For cryptographic strong one-way hash functions
h it is very likely that the protocol succeeds if and only if α = β, otherwise with
a very high probability the exchanged hash values will be different.

The author of [4] also addresses that for arbitrary client/server environments,
where several clients are able to connect in parallel to a server, guessing attacks

11

client gets (C, π) server on S

γ = H0(C|π), γ′ = γ−1 mod p γ = H0(C|π), γ′ = γ−1 mod p
ν = gu mod p with u = h1(C|π)

choose x in ZZ∗
q randomly

m = gxγ mod p
C, m
−−−−→

abort if there is no account for C
choose y in ZZ∗

q randomly
µ = νy mod p
β = (mγ′gm)y mod p
k1 = h2(C|S|m|µ|β|γ′)

µ, k1←−−−−
w = u−1(x + m) mod q
α = µw mod p
k′1 = h2(C|S|m|µ|α|γ′)
abort if k1 6= k′1
k2 = h3(C|S|m|µ|α|γ′)

k2−−→
k′2 = h3(C|S|m|µ|β|γ′)
abort if k2 6= k′2

skC = h4(C|S|m|µ|α|γ′) skS = h4(C|S|m|µ|β|γ′)

Fig. 4. TP-AMP

12

might be a problem. In the next section we point out that we need not take care
of this situation for our communication setup.

3.1 Adaption of TP-AMP

In this paper we want to simplify the protocol TP-AMP for the use as an authen-
tication protocol on contactless operating smart cards. In this scenario the smart
card acts as the server and a reader operates as the client. The ISO/IEC 14443
standard ensures that exactly one card and one reader are talking with each
other.

Furthermore, in order to increase the performance we want to adapt the
protocol such that it uses elliptic curves instead of prime fields, we call this
protocol then TC-AMP.

The communication partners of course have to agree on an elliptic curve
E and base point G. The operations are then performed in the cyclic group
< G >:= {t ∗ G|t ∈ IN}, n := | < G > |. In the following, < G >∗ denotes the
cyclic group < G > without the point at infinity and for every point M of the
elliptic curve Mx denotes the x-coordinate of the point M . In addition to that
we need a second base point G′ ∈< G >∗ which is chosen so that no l ∈ ZZ∗

n is
known with G′ = l ∗G.

From the password π we derive the values u = h0(π) mod n, Γ0 = u ∗G, and
Γ1 = u ∗G′, Γ ′

1 = −Γ1.3

Then figure 5 gives the procedure of TC-AMP.
In step (b) the PCD computes a random point M on the elliptic curve and

sends it to the PICC. In step (c) the PICC computes a random point Q of the
elliptic curve and sends it to the PCD. While M depends on the secret Γ0, Q
depends on the secret Γ1. The PICC furthermore computes the common secret
B in step (e) and derives in step (g) the hash value k1 of the x-coordinates of
M , Q and B. The hash value k1 is sent to the PCD, which uses Q to compute
the common secret A. If both parties know the correct value of Γ0 and Γ1 it
follows that A = B so that the PCD is able to verify k1 in steps (j) and (k). The
PCD then computes a different hash value k2 of the x-coordinates of M , Q and
A and sends it to the PICC, which will then be able to verify this hash value if
A = B in steps (m) and (n). Finally both parties derive session keys for secure
messaging in step (o).

In order to adapt TP-AMP to our needs we carry out the following simplifi-
cations.

A smart card operating according to the ISO/IEC 14443 standard does not
need the identifiers S and C in the protocol as for TP-AMP, since a reader can
only communicate at most with one smart card and vice versa.

Furthermore we omit value Γ0 and Γ1 from hashing since the values M and
Q directly depend on Γ0 or Γ1. Please note, that it is not advisible to simply the

3 For a real-life security environment one has to ensure that the mapping of π 7→ Γ0, Γ1

does not result in the point at infinity. Though the protocol still works in this case,
it just collapses to trivial values.

13

terminal (PCD) gets π smart card (PICC) Step

u = h0(π) mod n, u = h0(π) mod n, (a)
Γ0 = u ∗G, Γ0 = u ∗G,
Γ1 = u ∗G′, Γ ′

1 = −Γ1 Γ1 = u ∗G′,
choose x ∈ ZZ∗

n randomly such that (b)
M = (x ∗G) + Γ ′

1 ∈< G >∗ and
m = Mx mod n

M−−−→
abort if M /∈< G >∗ (c)
m = M.x mod n
choose y ∈ ZZ∗

n randomly such that (d)
Q = y ∗ Γ0

B = y ∗ (M + Γ1 + (m ∗G)) (e)
abort if B /∈< G >∗ (f)
k1 = h2(Mx|Qx|Bx) (g)

Q, k1←−−−−−
w = u−1(x + m) mod n (h)
A = w ∗Q (i)
k′1 = h2(Mx|Qx|Ax) (j)
abort if k1 6= k′1 (k)
k2 = h3(Mx|Qx|Ax) (l)

k2−−→
k′2 = h3(Mx|Qx|Bx) (m)
abort if k2 6= k′2 (n)

kENC = h(Ax|1), kMAC = h(Ax|2) kENC = h(Bx|1), kMAC = h(Bx|2) (o)

Fig. 5. TC-AMP

14

protocol further so that only M = x ∗G is computed and send and B does not
depend on Γ1. If the protocol is simplied that way it is highly vulnerable to an
offline dictionary attack, where the attacker only needs one response (Q, k1) in
order to mount the attack.

3.2 Security of TC-AMP

The security of the TC-AMP protocol relies on the intractability assumption of
the discrete logarithmic problem, the cryptographic strength of the hash function
and the secrecy of the password π.

In order to prevent guessing attacks a smart card operating system has the
following options:

1. It can implement an error counter. If the error counter then reaches a certain
value the smart card operating system permanently disables the smart card.
For an contact less operating smart card the protocol might be executed by
an attacker if he is able to place at close range a smart card reader. This
attacker might just have the goal to disable the smart card. Thus simply
increasing an error counter could be the wrong countermeasure against denial
of service (DoS) attacks.

2. It can implement a time delay between a session where the protocol failed
and a new session so that a guessing attack would consume too much time.
If the time delay on the other hand is too big a DoS attack would be possible
again. A standard technique for realizing a time delay is to use an EEPROM
memory cell to realize a delay counter. Of course on the one hand that would
stress the lifetime of a dedicated EEPROM cell a lot and on the other hand
even more important, an adversary might be able to detect the EEPROM-
writing routine and disable the power supply for the smart card before the
EEPROM-writing has been finished. The SmartMX of NXP offers a clever
hardware solution that does not involve the usage of EEPROM, here, the
smart card operating system is able to set a dedicated bit, called Delay
Latch, which will be automatically erased again after a couple of minutes
independently of the power supply of the smart card.

A Man-in-the-Middle attack is only possible if the adversary knows the pass-
word π since all hash values ki indirectly depend on the knowledge of π.

If the adversary is the reader, he can freely choose the value M in step (b) in
figure 5 and collect responses (Q, k1). First of all the problem to find an M such
that m ∗ G = −M is intractable or even unsolvable. Next, in order to prevent
small subgroups attacks, the smart card has to check that M ∈< G >. Since y
is a random value it is not disclosed by Q. On the other hand Q gives a hint
for (y ∗ G) because of the low entropy of π there are only a few u, i.e. if u′ is
a guess for u than u′−1 ∗ Q is a guess for (y ∗ G). It is important that B does
not linearly depend on G if the adversary does not know Γ1, that is why no
linear relationship between G′ and G shall be known. The adversary can use the
value k1 for an exhaustive search for B. Although in case he reveals B he can
successfully proceed the protocol, π is still not disclosed for upcoming sessions.

15

If the adversary is a smart card, he is able to collect M . Since x is chosen
randomly, no information about π is disclosed. The first response (Q, k1) of the
adversary will reveal that he does not know the password π.

If the protocol is aborted in step (f) in figure 5 a secret pin π with low entropy
is disclosed since then Γ1 = −M−m∗G and π can be retrieved by an exhaustive
search by the terminal or an observer. However, for cryptographically suitable
elliptic curves this case has no practically relevance.

As a matter of principle elliptic curves with co-factor equal to 1 should
be used in order to exclude small-subgroup attacks. The security environment
should only use cryptographically secure elliptic curves where the parameter gen-
eration can be reproduced. For TC-AMP, one particularly needs to understand
that no linear relationship between the base points G and G′ is known. As an
example the derivation of the Brainpool elliptic curves [5] is most transparent.

We pointed out that we do not directly use the secrets Γ0 or Γ1 for hashing
as it was considered for TP-AMP. For a static π, the elliptic points Γ0 and Γ1

are also static and might be subject to a side channel attack. Since it is hard to
secure standard hash algorithms against side channel attacks it is then even an
advantage to omit Γ0 or Γ1 from hashing.

Referring to the attacks listed on page 3, firstly, an adversary is not able to
perform an off-line dictionary attack since M and Q are random points on the
elliptic curve and even if he succeeds to derive A or B from the hash values k1

or k2 he is not able to derive π. Secondly, an on-line dictionary attack (1), where
an active adversary is able to exclude several passwords from one protocol run,
is not possible provided that the mapping π 7→ Γ1 is injective, since there exists
only one Γ1 such that the protocol aborts in step (f) and the two exchanged hash
values do not reveal any practical information about π. Of course an adversary
is able to perform an on-line attack (2).

3.3 Implementation of TC-AMP

This section describes details of the implementation of the TC-AMP protocol.
For the performance analysis within the next section a TC-AMP implemen-

tation on NXP’s smart card controller SmartMX was developed. This imple-
mentation is based on NXP’s certified crypto library on the SmartMX. This
section contains beside the description of the basic crypto functionality needed
the ISO/IEC 7816 command mapping.

For the implementation of TC-AMP the elliptic curve domain parameters
brainpoolP224r1 from [5] have been chosen. For the hash function hi the hash
algorithm SHA-1 was used (see [6]).

The implementation of TC-AMP uses the following basic cryptographic func-
tionality:

1. EC Diffie-Hellman key exchange used as elliptic curve scalar point multipli-
cation in step (a), (d) and twice in step (e) of figure 5,

2. EC point addition twice in step (e),
3. SHA-1 hash function in steps (a), (g), (m) and (o),

16

4. Modular reduction in step (a) and for m in step (e).

The cryptographic functions for the native implementation are written in the
programming-languages C and Assembler and the implementation is analyzed
in the next section 3.4.

ISO/IEC 7816 Commands The following sequence of commands is used to
implement TC-AMP:

1. MSE:Set AT
2. General Authenticate

(a) Key Agreement
(b) Mutual Authenticate

The command General Authenticate is divided into the above two sub-
commands by using the ISO/IEC 7816 command chaining.

Table 2 provides the ISO/IEC 7816 command mapping that has been used.

Table 2. ISO/IEC7816 Command Mapping

MSE: Set AT

CLA/INS/P1/P2 Data LE
C-APDU 00 22 C1 A4 80 01 12 83 01 02 —

SW Data
R-APDU 90 00 —

General Authenticate: Key Agreement

CLA/INS/P1/P2 Data LE
C-APDU 10 86 00 00 80 39 04 MxMy 4F

SW Data
R-APDU 90 00 81 4D 04 QxQyk1

General Authenticate: Mutual Authenticate

CLA/INS/P1/P2 Data LE
C-APDU 00 86 00 00 82 14 k3 —

SW Data
R-APDU 90 00 —

3.4 Performance Analysis of TC-AMP

For the results in this section a measurement setup as described in appendix A
have been used.

17

Fig. 6. Processing of the TC-AMP protocol

18

Figure 6 shows the execution of the TC-AMP protocol on the NXP’s SmartMX
as it has been described in figure 5. As a whole the protocol consists of 3
Command- and Response-APDUs.

The green peaks pointing down indicate communication from PCD to PICC,
the blue peaks pointing up indicate communication from PICC to PCD. So
between a green and a blue peak the smart card is processing a Command-
APDU.

In figure 6 we marked six phases with Roman numerals (I) to (VI). The next
description gives the relation between the outline of TC-AMP from figure 5 and
the real implementation shown visually in figure 6.

Phase (I) In this phase the smart card computes Γ0 from step (a) by perform-
ing an elliptic curve scalar point multiplication. Note, that this phase can
be omitted if a static password π is used.

Phase (II) In the second phase the smart card performs step (d) by doing an
elliptic curve key generation and step (i) by performing an elliptic curve
scalar point multiplication.

Phase (III) In this phase the smart card computes Γ1 from step (a) by doing
an elliptic curve scalar point multiplication. Note, that this phase can be
omitted if a static password π is used.

Phase (IV) In this phase the smart card performs steps (c) and m∗G by doing
an elliptic curve scalar point multiplication.

Phase (V) Finally in the second APDU the remaining operations of step (e)
and steps (f), (g) are performed.

Phase (VI) In the last phase the value k′2 from step (m) is computed.

The total execution time of the TC-AMP protocol is about 978 ms, where
the time consumption for the contactless communication is only about 18ms
(1.9%). Most of the time, about 830ms (84.8%), is used for the operations on
the smart card.

The power consumption increases significantly if the FameXE, the co-processor
for asymmetric cryptography on the SmartMX, is used. One elliptic curve key
generation and three elliptic curve scalar point multiplications, which are needed
by TC-AMP, are visible in figure 6. The time needed by the four SHA-1 opera-
tions is negligible compared to the elliptic curve operations.

4 Conclusion

In this paper, we describe for the first time specific attacks concerning con-
tactless smart cards. Furthermore, we introduce password-based authenticated
key agreement protocols as countermeasures against unauthorized communica-
tion with the card and against eavesdropping of the data transmission between
terminal and card. Im particular, two different password-based protocols are pre-
sented and analysed, PACE and TC-AMP. PACE was exclusively designed for
the establishment of authenticated channels between terminal and card. How-
ever, TC-AMP is a reduction of TP-AMP [4] and is first published in this paper.

19

Fig. 7. Contactless Measurement Setup

Both are suitable for elliptic curves. Here, both protocols are adapted to use
elliptic curves. To resist specific off-line dictionary attacks both protocols use
two base points G and G′. While PACE calculates a fresh base point G′ in each
protocol run, TC-AMP uses a static base point G′. From a security perspective
for both realizations it is important that no relationship between G and G′ is
known. While three ISO 7816 commands are necessary to implement TC-AMP,
five ISO 7816 commands are needed to realise PACE. Although, there is a large
difference concerning the required APDUs, the performance is very similar. The
reason is the extensive use of time-consuming EC point additions and EC scalar
point multiplications in TC-AMP.

We have to point out, that PACE calculates a new fresh base point G′ within
each protocol run within this time frame whereas TC-AMP uses a static G′. No
general direction for the use of a static or dynamic G′ can be given here. This
is an application-specific requirement.

Implementations of PACE and TC-AMP on a native card operating system
are the basis for real performance measurements. Within this paper, hints to
Javacard implementations of PACE and TC-AMP are given although, until now,
no such JCOP implementations are available; this will be addressed within future
work.

Furthermore, formal cryptographic proofs of security for PACE and TC-AMP
as yet do not exist; these are the subject of current studies.

A Measurement Setup

The measurement setup for the performance analysis is sketched in figure 7. A
host computer controls a contactless card reader, in our case the NXP Pegoda
Reader, to perform the cryptographic algorithm on the smart card. The con-
tactless card reader generates a magnetic field that is used as a physical carrier
for the power transfer and the data transmission. The smart card is powered by
the magnetic field only. The smart card coil converts the magnetic field into a
voltage that supplies the integrated circuit.

A sense coil is located close to the smart card coil. It measures the magnetic
field generated by the reader device and the superposed magnetic field caused by

20

the smart card current. Assuming that the reader field has constant amplitude
during the execution of the cryptographic functions, the AC amplitude of sense
coil voltage presents the variations of the smart card current. An AM demodu-
lator (peak detector) converts RF voltage to an amplitude signal. Because the
usual attacks are independent of the DC component, the AC component of the
amplitude voltage is perfect as input signal for a software analysis. A digital
scope converts the analog measured coil voltage to digital data. The data are
transferred to a host computer and stored on a disk drive.

The communication speed for the NXP Pegoda Reader and the smart card
has been set to 106 kBaud/s.

B Notes for a Javacard Implementation

This section discusses an implementation of the PACE - and TC-AMP protocol
on a Javacard operating system.

B.1 Remarks for PACE

For an implementation of the PACE protocol on a Javacard Operating System
the following standard APIs (Javacard Version 2.2.2, cf. [7]) can be used:

– EC key generation (Class: KeyBuilder, Objects: TYPE EC FP PRIVATE,
TYPE EC FP PUBLIC),

– 3-DES encryption, ECB mode (Class: Cipher, Object: ALG DES ECB NOPAD).

In addition the following non-standard APIs which are not covered by Javac-
ard API Version 2.2.2, cf. [7], are needed to implement PACE:

– EC point addition,
– EC Diffie-Hellman key exchange (without key derivation).

The standard Diffie-Hellman key exchange of the Javacard 2.2.2 API (Class:
KeyAgreement) cannot be used because it includes the key derivation function
(i.e. hashing of the result).

B.2 Remarks for TC-AMP

For an implementation of the TC-AMP protocol on a Javacard Operating System
the following standard APIs (Javacard Version 2.2.2, cf. [7]) can be used:

– EC key generation (Class: KeyBuilder, Objects: TYPE EC FP PRIVATE,
TYPE EC FP PUBLIC)

– SHA-1 hash function (Class: MessageDigest, Object: ALG SHA)

Additionally the following non-standard APIs, which are not covered by
Javacard API Version 2.2.2, cf. [7], are needed to implement TC-AMP:

21

– EC point addition,
– EC Diffie-Hellman key exchange,
– Modular reduction.

The standard Diffie-Hellman key exchange of the Javacard 2.2.2 API (Class:
KeyAgreement) cannot be used because it includes the key derivation function
(i.e. hashing of the result).

B.3 JCOP

NXP offers the Javacard Operating System JCOP on the SmartMX, which will
have all pre-requisites for the implementation of PACE and TC-AMP.

References

1. ICAO Doc 9303. Part 1 - Machine Readable Passport. ICAO, 6th edition, 2006.
2. ICAO Doc 9303. Part 2 - Machine Readable Visas. ICAO, 3rd edition, 2005.
3. ICAO Doc 9303. Part 3 - Size 1 and Size 2 Machine Readable Official Travel Doc-

uments. ICAO, 2nd edition, 2002.
4. Kwon, T.: Practical Authenticated Key Agreement using Passwords. Springer Berlin

/ Heidelberg 3225 (2004) 1–12
5. ECC Brainpool Standard Curves and Curve Generation, Version 1.0 (available on-

line at http://www.ecc-brainpool.org/ecc-standard.htm), 2005
6. FIPS PUB 180-2, Secure Hash Standard, Federal Information Processing Standards

Publication, August 1st, 2002, (plus Change Notice 1 to include SHA-224, Febru-
ary 25th, 2004), US Department of Commerce/National Institute of Standards and
Technology

7. Java Card Platform: Application Programming Interface, Version 2.2.2 (available
online at http://java.sun.com/products/javacard/specs.html), 2006

8. FIPS 46-3, Data Encryption Standard (DES), October 1999
9. BSI, Technical Guideline TR-03110: Advanced Security Mechanisms for Machine

Readable Travel Documents Extended Access Control (EAC) and Password Au-
thenticated Connection Establishment (PACE), Version 2.0, February 2008

10. Steven M. Bellovin and Michael Merritt, Augmented encrypted key exchange:
Password-based protocol secure against dictionary attacks, Symposium on Research
in Security and Privacy, IEEE Computer Society Press, 1992

11. Ziv Kfir and Avishai Wool, Picking Virtual Pockets using Relay Attacks on
Contact-less Smartcard Systems, Proceedings of the First International Conference
on Security and Privacy for Emerging Areas in Communication Networks, IEEE
Computer Society Press, 2005

12. NXP, ISO/IEC 14443 Eavesdropping and Activation Distance, 13,56 MHz prox-
imity smart cards, Application note, Rev. 01.01, Januar 2008

13. European Radiocommunication Committee (ERC) within the European Confer-
ence of Postal and Telecommunications Administrations, Propagation Model and
Interference Range Calculation for Inductive Systems 10 kHz - 30 MHz, Marbella,
February 1999

14. Markus Ullmann, Flexible Visual Display Units as Security Enforcing Component
for Contactless Smart Card Systems, Proceedings RFID2007, Vienna 2007

22

15. ISO/IEC14443, Contactless Integrated circuit(s) cards, Part 1: Physical Charac-
teristics, April 2000

16. ISO/IEC14443, Contactless Integrated circuit(s) cards, Part 2: Radios Frequency
Power and Signal Interface, July 2001

17. ISO/IEC14443, Contactless Integrated circuit(s) cards, Part 3: Initialization and
Anticollision, February 2001

18. ISO/IEC14443, Contactless Integrated circuit(s) cards, Part 4: Transmission Pro-
tocol, February 2001

19. David Jablon, List of Research Paper on Password-based Cryptography, (available
online at www.jablon.org/passwordlinks.html), 2008

