
Side-Channel Analysis Resistant
Implementation of AES on

Automotive Processors

Master Thesis

Ruhr-University Bochum

Chair for Embedded Security

Prof. Dr.-Ing. Christof Paar

from

Andreas Hoheisel

June 12, 2009

Co-Advised by:

Dipl.-Ing. Timo Kasper (Ruhr-University Bochum)

Dr. Torsten Schütze (Robert Bosch GmbH, CR/AEA)

iii

Statement

I hereby declare, that the work presented in this master thesis is my own work and that
to the best of my knowledge it is original, except where indicated by references to other
authors.

Erklärung

Hiermit versichere ich, dass ich meine Master Thesis selber verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich gemacht habe.

Bochum, den 12. Juni 2009

Andreas Hoheisel

Contents

Glossary i

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Adversary Model and Assumptions . 2

1.3 Scope . 3

2 AES – Advanced Encryption Standard 5

2.1 Introduction . 5

2.2 Mathematical Background . 7

2.3 Implementation Aspects . 8

2.3.1 Microcontroller Model . 9

2.3.2 The Key Schedule . 9

2.3.3 8-bit Software Implementation Straight from the Standard 11

2.3.4 8-bit Optimized Software Implementation 15

2.3.5 32-bit Software Implementation . 16

2.3.6 32-bit T-Tables Implementation . 19

2.3.7 32-bit Implementation with Transposed State 20

2.3.8 Hardware Implementations . 20

2.3.9 Comparison of Different Implementation Options 21

3 Side-Channel Analysis 25

3.1 Timing Analysis . 25

3.1.1 Evaluation of Timing Analysis Resistance 27

3.1.2 Two Sample T-Test . 27

3.1.3 Fisher’s F-Test . 28

3.2 Simple Power Analysis . 30

3.3 Differential and Correlation Power Analysis 30

4 Side-Channel Resistant AES Implementation 33

4.1 Random Bits . 33

4.2 Countermeasure: Masking . 34

4.2.1 Additive Masking . 34

4.2.2 Transformed Masking Method . 36

i

ii Contents

4.2.3 Perfectly Masking AES Inverter Against First-Order Side-Channel At-
tacks . 38

4.2.4 Combined Masking in Tower Fields . 40

4.2.5 Masking the MixColumns Transformation 42

4.3 Countermeasure: Randomization . 42

4.3.1 Shuffling . 42

4.3.2 Execution of Dummy Operations . 43

4.4 Comparison . 44

4.5 Low-Cost SCA-Resistant AES Software Implementation 46

5 Target Platform: TriCore TC1796 49

5.1 Development Environment . 49

5.1.1 Compiler . 50

5.1.2 Simulator . 51

5.1.3 Evaluation Board . 51

5.1.4 The Multi-Core Debug System . 51

5.2 TriCore CPU . 51

5.3 TriCore Instruction Set . 54

5.3.1 Load and Store Instructions . 54

5.3.2 Arithmetic Instructions . 55

5.3.3 Extract Instruction . 56

5.3.4 Address Arithmetic . 57

5.4 Time Measurement . 57

6 Optimized and Randomized AES Implementations on TriCore 59

6.1 Implementation Constraints . 59

6.1.1 Validation Tests . 59

6.2 Available AES Implementations . 60

6.3 General Optimizations Hints . 61

6.4 AES Optimizations for the TriCore . 61

6.4.1 AddRoundKey . 61

6.4.2 SubBytes and ShiftRows . 62

6.4.3 MixColumns . 63

6.4.4 Inverse MixColumns . 65

6.5 Size Comparison of Unprotected Implementations 65

6.6 Protected AES Implementation . 66

6.6.1 Masking the Optimized AES Implementation 66

6.6.2 Size Comparison of Protected Implementations 72

7 Implementation Results 75

7.1 Measurement Setup . 75

7.2 Runtime Comparison of the Implementations 75

7.3 Timing Analysis . 77

7.3.1 Timing Analysis of the Unprotected AES Implementations 80

7.3.2 Timing Analysis of the Protected AES Implementation 82

7.4 Power Analysis . 87

Contents iii

8 Conclusion 89

Bibliography 93

Glossary

Notation Description
ACNS Applied Cryptography and Network Security Conference
AES Advanced Encryption Standard

cc Cycle Count
CMTF Combined Masking in Tower Fields
CPU Central Processing Unit

DPA Differential Power Analysis

ECU Electronic Control Units

GF Galois Field
GPR General Purpose Registers

IP Integer Pipeline

JTAG Joint Test Action Group

KAT Known Answer Tests

LS Load Store Pipeline
LUT Lookup Table

MCDS Multi-Core Debug System
MISRA Motor Industry Software Reliability
MSB Most Significant Bit

NIST National Institute of Standards and Technology
NOP No Operation

PC Program Counter
PLL Phase-Locked Loop
PMM Perfectly Masked Multiplication
PMS Perfectly Masked Squaring

RNG Random Number Generator
ROM Read Only Memory

v

vi Glossary

Notation Description

SCA Side Channel Analysis
SPA Simple Power Analysis
splint Secure Programming Lint
SPN Substitution-Permutation Network

TLU Table lookup
TMM Transformed Multiplicative Masking

UDE Universal Debug Engine

VCO Voltage Controlled Oscillator

XOR exclusive OR

List of Tables

2.1 Comparison between different unprotected AES software implementations . . 23

4.1 Number of random values required for secured implementation 44

4.2 Estimated memory consumption and cycle count for different AES implemen-
tations with masking countermeasure, one mask / four masks 45

4.3 Comparison of an unmasked AES implementations with a masked and a masked
and randomized AES implementation with D dummy operations on an 8-bit
smart card processors (AVR), Source: [HOM06]. 47

5.1 Operation Modifiers . 54

5.2 Data Type Modifiers . 55

6.1 Memory consumption comparison between the AES reference implementation
from Brijesh Singh and the Optimized TriCore implementation 66

6.2 Number of random values required for the protected AES Implementation wit
additive masking . 67

6.3 Memory consumption comparison between the protected AES implementation 72

6.4 Content of the data section for the protected AES Implementation with addi-
tive masking . 72

6.5 Content of the data section for the protected AES Implementation with CMTF 73

7.1 Comparison of runtime and program size between the different TriCore AES
implementations. The variable D denotes the number of dummy operations
for the protected AES implementation. 76

7.2 The five different measurement sets . 77

7.3 Runtime analysis of the AES implementation from Szerwinski 80

7.4 Runtime analysis of the optimized AES encryption 80

7.5 Runtime analysis of the AES implementation from Singh-1 81

7.6 Runtime analysis of the AES implementation from Singh-2 82

7.7 Runtime of protected AES encryption with 16 dummy operations (D=16) . . 82

7.8 Two sample t-test for the protected AES encryption with 16 dummy operations
(left) and p-values of the test (right) . 84

7.9 F-test for the protected AES encryption with 16 dummy operations (left) and
the p-values of the test (right) . 85

7.10 Runtime of protected AES decryption with 16 dummy operations (D=16) . . 85

7.11 Two-sample t-test for the protected AES decryption with 16 dummy operations
(left) and the p-values of the test (right) . 86

7.12 Fishers F-test for the protected AES decryption with 16 dummy operations
(left) and p-values of the test (right) . 87

vii

List of Figures

2.1 Sequence of transformations used in an AES-128 encryption 6

2.2 Mapping of input bytes to the State matrix and the output ciphertext 6

2.3 The SubBytes transformation . 7

2.4 The ShiftRows transformation . 7

2.5 The MixColumns transformation . 8

2.6 Decomposed SubBytes transformation . 13

4.1 Initial AddRoundKey followed by the first SubBytes transformation in round
one for one byte of the State matrix . 33

4.2 SubBytes transformation with masking countermeasure 36

4.3 Multiplicative (left), Source: [AG01], and Simplified Multiplicative (right),
Source: [TSG02](right), Masked inversion in SubBytes 37

4.4 Shuffled AES-State . 42

4.5 AES-State with dummy values . 43

4.6 AES-State with dummy values and shuffled AES-State 43

4.7 Program flow of a randomized AES implementation where all transformations
are masked in the first and last two rounds. The current masks (M , M ′,
M1,. . . ,M4 and M ′1,. . . ,M ′4) are depicted right of the State. Adapted from:
[THM07]. 46

5.1 TriBoard – TC1796.303 on the left and AD2 on the right 52

5.2 MCDS config dialog . 53

5.3 The three parallel pipelines of the execution unit 53

5.4 Operation of the EXTR.U instruction, source:[Inf07] 56

5.5 Packed Byte Data Format, source:[Inf07] . 56

6.1 Protected AES . 67

7.1 Runtime of the protected AES encryption with 1 ≤ D ≤ 255. The S-box is
recalculated after every AES encryption. 78

7.2 Runtime of the protected AES decryption with 1 ≤ D ≤ 255. The S-box is
recalculated after every AES decryption. 78

7.3 Runtime of the protected AES encryption with ten dummy operations (D=10).
The S-box is recalculated after every 5th AES encryption. 79

7.4 Histogram of the runtime for optimized AES implementation 81

7.5 Runtime of the protected AES encryption (set four) with 16 dummy operations
(D=16). The lines denote the mean (middle) and the variance of the runtime. 83

7.6 Histogram of the runtime for protected AES encryption with 16 dummy oper-
ations (D=16) . 83

ix

x List of Figures

7.7 Histogram of the runtime for protected AES decryption with 16 dummy oper-
ations (D=16) . 85

Chapter 1

Introduction

1.1 Motivation

Nowadays, security becomes more and more important in the automotive industry. Robert
Bosch GmbH, Corporate Research supplies the necessary know-how and provides solutions
for future applications in the business units.

Many functions in a modern car are realized with the help of software applications and the
underlying electronics. This means in particular, that a growing part of the components in a
car are realized through an easy to copy and manipulate software. Due to this fact, there is a
growing need for an effective protection of these software applications to save the intellectual
property on the one hand and to disclose manipulation, e. g., by tuning, on the other hand.

There are up to 80 electronic control units (ECU) built into a modern upper class car. These
control units come from different suppliers, communicate over potentially insecure networks
with each other and with the outside world respectively, e. g., with diagnostic equipment or in
the near future Car2Car and Car2Infrastructure. As a consequence, these control units should
authenticate each other and the communication data should be cryptographically protected
against manipulation.

For several use cases in the automotive domain, e. g., tuning detection and sensor protection,
cryptography constitutes a considerable part of the overall-security architecture. Due to their
performance and compactness in implementations, symmetric encryption primitives are of
special interest. These primitives can be used for attaining the following security goals:

• confidentiality: encryption of data,

• authenticity: challenge-response protocols,

• integrity: message authentication codes.

The State-of-the-Art symmetric encryption scheme is the Advanced Encryption Standard
(AES), [FIP01]. This block cipher with key sizes of 128, 192, and 256 bits and a block size
of 128 bits is remarkably fast and can be implemented very efficiently on a wide variety of
platforms. It replaces the old Data Encryption Standard DES or, to be more precise, its
variant Triple-DES.

A lot of proprietary mechanisms in the automotive environment are getting replaced by
standardized security mechanisms. An example is here the changeover from the proprietary
KeeLoq System1, which is used for keyless entry in cars and garage doors, to modern challenge-
response protocols based on AES2.

1 http://www.microchip.com
2 Embedded AES-crypto engine for keyless entry systems, ESCAR2007.

1

2 Chapter 1. Introduction

1.2 Adversary Model and Assumptions

Ross Anderson and Markus Kuhn give a good classification of adversaries’ knowledge, funding,
and skills in [AK98]. They define the following three classes of attackers:

• Class I (clever outsiders): They are very intelligent but may have insufficient knowl-
edge of the system. They may have access to only moderately sophisticated equipment.
They often try to take advantage of an existing weakness in the system, rather than try
to create one.

• Class II (knowledgeable insiders): They have substantial specialized technical ed-
ucation and experience. They have varying degrees of understanding of parts of the
system but potential access to most of it. They have highly sophisticated tools and
instruments for analysis.

• Class III (funded organizations): They are able to assemble teams of specialists
with related and complementary skills backed by great funding resources. They can do
in-depth analysis of the system, design sophisticated attacks, and use the most advanced
analysis tools. They may use Class II Adversaries as part of the attack team.

We will focus on knowledgeable insiders, i. e., the cryptographic algorithm itself is known to
the attack agent (no security by obscurity!). The attack agent may have access to equipment
like oscilloscopes etc. that can be found in university labs. The specific implementation, e. g.,
the source code or an open sample device, is assumed to be not available to the attacker.

In terms of side-channel analysis resistance3, this means that our implementation should
be resistant against:

• timing attacks, and

• first-order differential power analysis (DPA) attacks.

Resistance against timing attacks implies that we assume an adversary having access to an
exact simulation of the runtime of the implementation. Note that we do not require resistance
against the new microarchitectural side-channel attacks like cache and branch predication
attacks [AKS07, Ber05, OST06, NS06]. This does not mean that these attacks may not be
relevant, it just means that we think that an attack agent has no or only little chance to install
a spy process on the target processor and to measure the timing signals with the necessary
precision.4

We assume that table lookups (TLU) have a constant runtime. For achieving timing
analysis resistance, we need a key-independent runtime of the implementation. Therefore we
will consider the effects of the 4-stage pipeline of the target processor, since they have a huge
influence on the runtime.

Resistance against first-order differential power analysis (DPA) attacks means that neither a
standard difference of means nor a correlation attack against the implementation will succeed

3 All attack details will be explained in later chapters.
4 A further, more practical reason is that we do not have yet the exact specification of next generation ECU

processor. Thus, it doesn’t make much sense to optimize the countermeasure to the very specific design of
current processors.

1.3 Scope 3

with a sufficient number of measurement traces. We assume that the attacker has no access
to a training device where he can input, e. g., random masks or keys, i. e., we effectively rule
out template attacks [GLRP06, APSQ06, CRR02].

The goal is not to make the implementation secure against second or higher order attacks,
i. e., the focus is put on simple masking schemes. Of course, very simple second order attacks,
e. g., by using the same mask twice directly on the bus, have to be prevented.

1.3 Scope

Robert Bosch GmbH, Corporate Sector Research and Engineering investigates the suitability
of side-channel resistant implementations of symmetric key primitives under the constraints
of the embedded domain. In this thesis, we will survey and investigate several masking
countermeasures described in the literature to protect an implementation of the Advanced
Encryption Standard (AES) against first-order DPA attacks in terms of security and runtime.

A selected countermeasure will be implemented in C (and partly in assembly language) on
a typical 32-bit automotive processor used in Embedded Control Units (ECUs), e. g., TriCore.
The implementation shall be secured against timing attacks as well. Of special interest is
an efficient implementation taking into account the requirements of embedded devices with
respect to memory and performance. Implementations of AES without countermeasures
against DPA are provided by Robert Bosch CR/AEA. The tasks, that are to be carried out
are:

• to understand and to survey the relevant AES implementation options,

• to understand and to survey the most important side-channel attacks (DPA: difference
of means + correlation power attack), timing attack,

• to survey countermeasures (it is not the goal to invent new countermeasures, just to
describe what is available in the literature),

• to describe the different masking schemes in their memory usage (RAM and ROM),
performance, and number of random bits,

• to select and to implement the most appropriate or a combination of methods,

• to implement AES efficiently and securely with a key length of 128 bits on a TriCore
17965 processor in C and, maybe, parts of it in Assembler.

All countermeasures considered in this master thesis will be algorithmic, i. e., software-
based, countermeasures. Although many hardware countermeasures have been discussed in
the literature, e. g., special logic styles such as Masked Dual Rail Pre-Charge Logic (MDPL),
increasing the noise by special noise generators, etc., we will only discuss these countermea-
sures if they can be applied to software as well. However, we will survey a number of counter-
measures which have been originally proposed for hardware implementations e. g., masking
in tower fields and investigate if they can be applied efficiently in software implementations.

5 The TriCore 1796 processor is currently used in most Engine Control Units of Bosch, e.g., MEDC17. It is
a typical 32-bit RISC processor with four pipeline stages. The maximum CPU frequency is 150 MHz.

4 Chapter 1. Introduction

For the masking countermeasures, we need a certain amount of random data. The genera-
tion of these random values is not part of this thesis. We assume that all random values are
given to our program via a pointer to an array with sufficient numbers of the necessary en-
tropy. For simulation the stream cipher Grain-80 [HJM05] is used as pseudo random number
generator (RNG).

We will present a side-channel resistant AES implementation for the TriCore architecture,
which is not available up to now. Therefore we will combine side-channel analysis (SCA)
countermeasures.

In Chapter 2 we will give a short overview of AES and the existing implementation options.
We will introduce some mathematical basics which are important to understand the upcoming
implementations. We introduce a processor model, which will help us to select the right
implementation option for our needs.

Chapter 3 gives an overview about known side-channels and possible attacks on it. The
focus lies on timing analysis because this form of side-channel will be analyzed at the end of
this thesis.

Chapter 4 describes countermeasures to prevent side-channel attacks. We analyze different
masking schemes in terms of size and runtime and combine them with other countermeasures
like randomization.

Chapter 5 is dedicated to the TriCore. We will describe the architecture and the assembler
instructions which are used for the implementation.

Chapter 6 is focused on the implementation. We will discuss improvements for the already
available implementations and based on the improvements build a protected AES implemen-
tation.

In Chapter 7 we will analyze the implemented AES versions in terms of their timing be-
havior.

Chapter 2

AES – Advanced Encryption Standard

2.1 Introduction

The Advanced Encryption Standard (AES), also known as Rijndael, is a symmetric block
cipher that was developed by the Belgian cryptographers Joan Daemen and Vincent Rijmen.
AES encrypts/decrypts data with a block size of 128 bits and a key size of 128, 192, or 256 bits.
AES targets on a small and fast implementation in hardware and software. The standard is
described in [FIP01]. Brian Gladman wrote a detailed description of AES in [Gla01] and an
updated version of the description in [Gla07]. We will give here a short overview to introduce
the notation used in this thesis.

AES is a typical substitution-permutation network (SPN), see [Sti05]. An SPN consists of
several rounds, each made up with a substitution and a permutation stage. The substitution
stage obscures the relationship between elements of the plaintext and elements of the cipher-
text, while the permutation stage makes of the influence of plaintext elements spread over
the ciphertext.

For AES, the number of rounds depends on the key size. We focus on a key size of 128 bits,
which corresponds to ten rounds. The 16 byte plaintext P = (p0, p1, . . . , p15) is internally
arranged in a 4 × 4 matrix, the so-called State matrix S. Every element sr,c of the State
matrix (r denotes the index of the row and c the index of the column) equals to one byte. In
Figure 2.1 we can see the individual transformations which are applied to the State matrix.
Figure 2.2 shows how the plaintext P is initially mapped to the State matrix S and then to
the ciphertext output, C = (c0, c1, . . . , c15).

In each round, four transformations are applied to the State matrix S:

1. Byte Substitution (SubBytes), which is a non-linear byte substitution operating indepen-
dently on each byte (sr,c) of the State matrix, using a substitution table called S-box.
This S-box can be constructed from two transformations:

a) an inversion in the finite field GF (28), where the zero is mapped to itself; and

b) a bitwise affine transformation.

2. ShiftRows, where the bytes sr,c in the State matrix are cyclically shifted. The first row
is not rotated. The second row is rotated to the left by one position, row three is rotated
to the left by two positions and row four is rotated to the left by three positions.

3. MixColumns, where every column of the State matrix is treated as a four-term polyno-
mial and gets multiplied by a fixed 4×4 matrix over GF (28) which is defined in [FIP01].

5

6 Chapter 2. AES – Advanced Encryption Standard

Plaintext

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Ciphertext

{
{

Normal round
(repeated 9 times)

Final round

RoundKey
00

RoundKey1...9

RoundKey
10

Figure 2.1: Sequence of transformations used in an AES-128 encryption

p3

p2

p1

p0

p7

p6

p5

p4

p11

p10

p9

p8

p15

p14

p13

p12

s3,0

s2,0

s1,0

s0,0

s3,1

s2,1

s1,1

s0,1

s3,2

s2,2

s1,2

s0,2

s3,3

s2,3

s1,3

s0,3

c3

c2

c1

c0

c7

c6

c5

c4

c11

c10

c9

c8

c15

c14

c13

c12

Figure 2.2: Mapping of input bytes to the State matrix and the output ciphertext

4. Key Addition (AddRoundKey), which adds a 4 × 4 key matrix (128-bit) to the State
matrix. This key matrix is called round key.

Figures 2.3 to 2.5 illustrate the transformations. The final round differs slightly from the
first nine rounds. As we see in Figure 2.1 the MixColumns transformation is missing, which
is also typical for a substitution-permutation network since the MixColumns transformation
adds no cryptographic strength to the algorithm if it is included at the end of the cipher.

Decryption is accomplished by running the algorithm “backward”. The last round key is
first XORed with the ciphertext, and then in each round, the inverse linear transformations
are applied, namely InvMixColumns, InvShiftRows, followed by the inverse S-box InvSubBytes.
Note that for AES additional space for the inverse functions used in decryption is needed,
in contrast to DES where encryption and decryption basically consume the same program
memory. For example, in AES we need additional 256 bytes if the inverse transformation
InvSubBytes is implemented as lookup table (LUT).

To supply the algorithm with the required round keys, AES uses a mechanism called key
scheduling. The encryption key of 16 bytes is expanded to an array with eleven round keys,
where each round key has a size of 16 bytes. So in total 176 bytes are needed for the round
keys. To provide non-linearity between the cipher key and the expanded round key, the key
schedule uses the SubBytes transformation followed by a cyclic rotation of the bytes and an
addition of a round constant. The round constant is defined by a simple recursive rule.

2.2 Mathematical Background 7

s3,0

s2,0

s1,0

s0,0

s3,1

s2,1

s1,1

s0,1

s3,2

s2,2

s1,2

s0,2

s3,3

s2,3

s1,3

s0,3

s′3,0

s′2,0

s′1,0

s′0,0

s′3,1

s′2,1

s′1,1

s′0,1

s′3,2

s′2,2

s′1,2

s′0,2

s′3,3

s′2,3

s′1,3

s′0,3

SubBytes
sr,c s′r,c

S-box

Figure 2.3: The SubBytes transformation

s3,0

s2,0

s1,0

s0,0

s3,1

s2,1

s1,1

s0,1

s3,2

s2,2

s1,2

s0,2

s3,3

s2,3

s1,3

s0,3

s3,3

s2,2

s1,1

s0,0

s3,0

s2,3

s1,2

s0,1

s3,1

s2,0

s1,3

s0,2

s3,2

s2,1

s1,0

s0,3

ShiftRows

Figure 2.4: The ShiftRows transformation

2.2 Mathematical Background

In order to explain the upcoming implementation tricks and the side-channel countermeasures,
we have to recall some basics on finite fields. Almost all operations that will follow are in the
finite field GF(2), i. e., the bits ’0’ and ’1’, or the extension field GF(28), where GF denotes
a Galois Field. A more detailed and general introduction to finite fields can be found in
[Kna06].

GF(28) is the unique finite field with 256 elements and the operations ⊕ (addition) and
⊗ (multiplication). Its elements can be represented as polynomials of order 8 with binary
coefficients ai ∈ {0, 1}, i = 0, . . . , 7. An element a ∈ GF(28) can thus be seen as the set of
coefficients ai ∈ GF(2) of the polynomial a with function value a(x), i. e.,

{a7a6a5a4a3a2a1a0}2 7→ a(x), (2.1)

a(x) =
7
∑

i=0

aix
i = a7x

7 + a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0. (2.2)

A sequence of 8 bits, for example {11010100}2, is called a byte. We will also depict byte
values by their hexadecimal notation. Hence we can write the value {11010100}2 as {D4}16

which represents the polynomial x7 + x6 + x4 + x2.

Addition. In the following, ⊕ denotes an addition in GF(28), that can be realized using
an exclusive OR (XOR). We can add two elements a, b ∈ GF (28) by adding their coefficients
modulo 2 element wise.

7
∑

i=0

aix
i ⊕

7
∑

i=0

bix
i =

7
∑

i=0

(ai ⊕ bi)xi (2.3)

Multiplication. Multiplication in GF(28) is the usual polynomial multiplication, modulus
an irreducible polynomial. For AES, the reduction polynomial m with

m(x) = x8 + x4 + x3 + x+ 1 (2.4)

8 Chapter 2. AES – Advanced Encryption Standard

s3,0

s2,0

s1,0

s0,0

s3,1

s2,1

s1,1

s0,1

s3,2

s2,2

s1,2

s0,2

s3,3

s2,3

s1,3

s0,3

s′3,0

s′2,0

s′1,0

s′0,0

s′3,1

s′2,1

s′1,1

s′0,1

s′3,2

s′2,2

s′1,2

s′0,2

s′3,3

s′2,3

s′1,3

s′0,3

s3,c

s2,c

s1,c

s0,c s′0,c

s′1,c

s′2,c

s′3,c

MixColumns

Figure 2.5: The MixColumns transformation

is used. The polynomial m can be represented by {11B}16. Note that in GF(28) reduction by
m(x) is equivalent to adding m(x).

We will use ⊗ to indicate the multiplication of two GF(28) elements, i. e., a(x) ⊗ b(x) :=
a(x) · b(x) mod m(x) with a, b ∈ GF(28) and “·” denoting a polynomial multiplication. The
reduction by m(x) ensures that the result is an element of GF(28).

We can implement the multiplication by x by a left shift and a subsequent conditional
bitwise XOR with {11B}16, if the most significant bit (MSB) bit is set. For example, multi-
plying {11001000}2 by x gives {110010000}2. The overflow bit is then removed by adding
{100011011}2, the modular polynomial, to give the final result of {10001011}2.

This method is called xtimes, see [Gla07]. Multiplication by higher powers of x can be
implemented by repeated application of xtimes. Since we can write all elements of GF(28) as
a sum of powers of {02}16, we can implement the multiplication by any value by a repeated
use of xtimes. To get the result of the multiplication with any input g by the constant value
{15}16, for example, we compute:

g ⊗ {15}16 = g ⊗ ({01}16 ⊕ {04}16 ⊕ {10}16)

= g ⊗ ({01}16 ⊕ {02}216 ⊕ {02}416)

= g ⊕ xtimes(xtimes(g)) ⊕ xtimes(xtimes(xtimes(xtimes(g))))

= g ⊕ xtimes(xtimes(g ⊕ xtimes(xtimes(g)))).

2.3 Implementation Aspects

AES is an industry-wide used block cipher since the National Institute of Standards and Tech-
nologies (NIST) adopted it in 2001 from the Rijndael algorithm. It is used for the protection
of government documents as well as for electronic commerce and private use. Many different
implementations of AES have been proposed and have been optimized for the specific require-
ments like maximized throughput or minimized circuitry. We will give a short overview of the
implementations, in order to get a picture of the tricks we can use for our implementation.

We begin by defining two microcontroller models (8-bit and 32-bit) to estimate the clock
cycles for the implementation. Then we present the 8-bit implementation which is proposed in
the standard [FIP01] and then look at existing 32-bit software implementations. We introduce
the affine transformation, which is part of the SubBytes transformation, because we will need
it in a later chapter.

For the current master thesis it is required to implement both encryption and decryption.
For reasons of brevity, we will focus on the description of the encryption and give only the
necessary hints for understanding the decryption process.

2.3 Implementation Aspects 9

2.3.1 Microcontroller Model

To compare the runtime of an encryption, we define a simple 8-bit processor model and count
the clock cycles (cc) according to that model. This model does not fit to all existing 8-bit
microcontrollers. Hence, the given clock cycle count is a rough estimate to get an impression of
the implementation. We make the following assumptions for byte operations on our processor
model:

• load/store from/to RAM takes one clock cycle,

• load/store from/to ROM takes two clock cycles,

• XOR two registers takes one clock cycle,

• shift by one bit takes one clock cycle.

For the 32-bit (word) operations, we expand our processor model, which is defined in
Section 2.3.3. We assume, that a load and a store operation on a word takes one clock cycle.

2.3.2 The Key Schedule

The AES implementation has a key size of 128 bits, which leads to ten rounds. With the
initial AddRoundKey transformation, an entire encryption needs eleven round keys. There
are two different options to supply the algorithm with those round keys:

Key Expansion Before the Encryption

1 KeyExpansion (byte key [1 6] , byte expkey [4] [4 4])
2 begin
3 for (j = 0 ; j < 4 ; j++) {
4 for (i = 0 ; i < 4 ; i++)
5 expkey [i] [j] = key [j ∗ 4 + i] ;
6 }
7 for (j = 4 ; j < 44 ; j++) {
8 i f (j % 4 == 0) {
9 expkey [0] [j] = expkey [0] [j −4] ^

10 SubBytes (expkey [1] [j −1] , 0) ^ rc [j / 4] ;
11 for (i = 1 ; i < 4 ; i++)
12 expkey [i] [j] = expkey [i] [j −4] ^
13 SubBytes (expkey [(i +1) % 4] [j −1] , 0) ;
14 }
15 else {
16 for (i = 0 ; i < 4 ; i++)
17 expkey [i] [j] = expkey [i] [j − 4] ^ expkey [i] [j − 1] ;
18 }
19 }
20 end

Listing 2.1: Key expansion from [DR02]

10 Chapter 2. AES – Advanced Encryption Standard

On the one hand, the whole round keys can be calculated before the actual encryption.
Therefore, the KeyExpansion function is used, which is depicted in Listing 2.1. This function
expands the 128-bit cipher key into an expanded key array, with four rows and 44 columns.
The size of each element of this array equals to one byte. To store this expanded key array,
we need 11 ·16 bytes = 176 bytes RAM. The first four columns (16 bytes) of the expanded key
are filled with the 128-bit cipher key. The next columns recursively depend on the previous
ones, with the following cases: If the column index j = 0, . . . , 43 is not a multiple of four,
column j is a bitwise XOR of column j−4 and column j−1. Otherwise, column j is a bitwise
XOR of column j − 4 and j − 1, with the difference, that the S-box is applied on the four
bytes of column j − 1, with an additional XOR of the round constant rc on the first byte of
this column. Since there are eleven rounds, also eleven round constants are needed, which
are calculated by the following recursion rule in GF(28):

rc[1] = 1, rc[2] = x, rc[n] = x⊗ rc[n − 1], n = 3, . . . , 11. (2.5)

Key On-The-Fly Calculation

On the other hand, we can calculate the round keys on-the-fly. This alternative method is
for environments with limited memory, e.g., smartcards. The calculation works the same way
as we described above, but we only store the last calculated round key since we see that the
calculations depend only on the columns j− 4 to j− 1, so we can derive the next one from it.
In Listing 2.2 the function NextRoundKey calculates the next round key from the last used
round key and the last used round constant rc. The first round key is the cipher key, the first
round constant is one.

1 NextRoundKey (byte round_key [1 6] , byte rc)
2 begin
3 round_key [0] = round_key [0] ^ SubBytes [round_key [1 3]] ^ rc ;
4 round_key [1] = round_key [1] ^ SubBytes [round_key [1 4]] ;
5 round_key [2] = round_key [2] ^ SubBytes [round_key [1 5]] ;
6 round_key [3] = round_key [3] ^ SubBytes [round_key [1 2]] ;
7

8 for (i =4; i <16; i++) {
9 round_key [i] = round_key [i] ^ round_key [i −4] ;

10 }
11 rc = xtime (rc) ; /∗ compute new round constant ∗/
12 end

Listing 2.2: Key on-the-fly generation [Gla01]

If the key is calculated on-the-fly, we have to add the calculation costs to our encryption
costs, since the calculation is done during every encryption. By counting the operations
from Listing 2.2, 17 XORs, 3 · 16 = 48 load and store operations plus four load operations
from ROM (for the S-box lookup) and two shift and an additional addition (XOR) for the
xtime operation are necessary to calculate the next round key. Summarizing, we get 72 cc for
calculating the next round key and in total, the key on-the-fly method costs 10 ·72 cc = 720 cc.

2.3 Implementation Aspects 11

2.3.3 8-bit Software Implementation Straight from the Standard

On an 8-bit processor, AES can be programmed by simply implementing the different com-
ponent transformations which are described in Section 2.1.

The AddRoundKey Transformation

During the AddRoundKey transformation, every byte of the State matrix S is XORed with
one byte from the expanded key. For one byte sr,c of the State this takes:

• 1 cc to load the byte sr,c from RAM,

• 1 cc to load one byte of the expanded key from RAM,

• 1 cc to XOR both, and

• 1 cc to store the result.

To process one State matrix S, 16 · 4 cc = 64 cc are needed. Since eleven round keys are
added during an AES run, a whole AES en-/decryption needs 11 · 64 cc = 704 cc for the
AddRoundKey transformations.

The ShiftRows Transformation

For ShiftRows the implementation is straightforward. Here the bytes in the last three rows
of the State matrix are cyclically shifted. For this operation, the State value is loaded from
RAM and must be written back at its new position. We assume that these two operations
take two clock cycles per byte of the State matrix. Then it takes 4 · 2 cc = 8 cc per row and
3 · 8 cc = 24 cc per transformation. For a whole AES en-/decryption with ten rounds we need
10 · 24 cc = 240 cc for the ten ShiftRows transformations.

The SubBytes Transformation

The SubBytes transformation is implemented in the standard as a static lookup table (the
S-box) of 256 bytes. For decryption, the inverse SubBytes transformation is needed, which
results in a second 256-byte lookup table. Both tables are generally located in read-only
memory (ROM). The transformation loads one byte from ROM, one byte from the State
matrix, XORs them, and writes the result back to RAM. We estimate that these operations
take five clock cycles. One SubBytes transformation takes 16 · 5 cc = 80 cc. For a whole
AES en-/decryption with ten rounds this makes 10 · 80 cc = 800 cc for the ten SubBytes
transformations.

The MixColumns Transformation

The MixColumns transformation considers every column sc (0 ≤ c ≤ 3) of the State matrix
as a four-term polynomial over GF (28). This column sc is multiplied by a fixed polynomial
a with:

a(x) = {03}16 · x3 + {01}16 · x2 + {01}16 · x+ {02}16 (2.6)

12 Chapter 2. AES – Advanced Encryption Standard

and then reduced by a fixed polynomial l with l(x) = x4 +1. The reduction by l decreases the
result so it fits to the column again. Since a is coprime to l it is invertible and all elements
have an inverse. The multiplication can be rewritten with the fixed polynomial a:

s′c(x) = a(x) · sc(x) mod l(x), for 0 ≤ c ≤ 3 (2.7)

as the matrix:

s′0,c = {02}16 ⊗ s0,c ⊕ {03}16 ⊗ s1,c ⊕ {01}16 ⊗ s2,c ⊕ {01}16 ⊗ s3,c, (2.8a)

s′1,c = {01}16 ⊗ s0,c ⊕ {02}16 ⊗ s1,c ⊕ {03}16 ⊗ s2,c ⊕ {01}16 ⊗ s3,c, (2.8b)

s′2,c = {01}16 ⊗ s0,c ⊕ {01}16 ⊗ s1,c ⊕ {02}16 ⊗ s2,c ⊕ {03}16 ⊗ s3,c, (2.8c)

s′3,c = {03}16 ⊗ s0,c ⊕ {01}16 ⊗ s1,c ⊕ {01}16 ⊗ s2,c ⊕ {02}16 ⊗ s3,c. (2.8d)

The indices 0, . . . , 3 indicate the byte in the column c of the current State S. A multiplication
with {02}16 can be efficiently implemented with the xtime operation which is denoted in
Listing 2.31 and described in Section 2.2.

1 byte xtimes (byte x)
2 begin
3 return (x<<1) ^ (((x>>7) & 1) ∗ 0x1b)
4 end

Listing 2.3: The xtimes operation

We estimate five clock cycles for the xtimes operation. A multiplication with {03}16 can
be implemented as a multiplication with {02}16 plus an additional XOR operation with the
operand. So for computing equations (2.8a) to (2.8d) we need:

• 4 · 1 cc = 4 cc for loading from RAM,

• 4 · 1 cc = 4 cc for writing to RAM,

• 4 · 3 cc = 12 cc for the additions (XOR),

• 4 · 5 cc = 20 cc for the four fixed multiplications with {02}16,

• 4 · 6 cc = 24 cc for the four fixed multiplications with {03}16.

This makes 64 cc per column, 4 · 64 cc = 256 cc per round and 9 · 256 cc = 2304 cc for all nine
MixColumns transformations during an AES encryption.

The Inverse MixColumns Transformation

The InvMixColumns transformation is similar to MixColumns transformation, but it uses the
inverse of a:

a−1(x) = {0B}16 · x3 + {0D}16 · x2 + {09}16 · x+ {0E}16. (2.9)

1 Please note that implementing xtime this way leaks timing information, due to the conditional multiplica-
tion with {1B}16. This will be discussed in Section 3.1.

2.3 Implementation Aspects 13

The Hamming weight2 of the coefficients of a−1(x) is larger, which leads to more xtime calls
and thus to a slower implementation for the decryption. For the InvMixColumns operation,
which is given by the equations:

s′c(x) = a−1(x) · sc(x) mod l(x), for 0 ≤ c ≤ 3 (2.10)

we get the following matrix:

s′0,c = {0E}16 ⊗ s0,c ⊕ {0B}16 ⊗ s1,c ⊕ {0D}16 ⊗ s2,c ⊕ {09}16 ⊗ s3,c, (2.11a)

s′1,c = {09}16 ⊗ s0,c ⊕ {0E}16 ⊗ s1,c ⊕ {0B}16 ⊗ s2,c ⊕ {0D}16 ⊗ s3,c, (2.11b)

s′2,c = {0D}16 ⊗ s0,c ⊕ {09}16 ⊗ s1,c ⊕ {0E}16 ⊗ s2,c ⊕ {0B}16 ⊗ s3,c, (2.11c)

s′3,c = {0B}16 ⊗ s0,c ⊕ {0D}16 ⊗ s1,c ⊕ {09}16 ⊗ s2,c ⊕ {0E}16 ⊗ s3,c. (2.11d)

For the inverse MixColumns transformation the following operations are needed:

• 4 · 1 cc = 4 cc for loading from RAM,

• 4 · 1 cc = 4 cc for writing to RAM,

• 4 · 3 cc = 12 cc for the additions (XOR),

• 4 · 17 cc = 68 cc for the four fixed multiplications with {0E}16,

• 4 · 17 cc = 68 cc for the four fixed multiplications with {0D}16,

• 4 · 17 cc = 68 cc for the four fixed multiplications with {0B}16,

• 4 · 16 cc = 64 cc for the four fixed multiplications with {09}16,

Summarizing: To calculate a column of the State matrix S, 288 cc are needed. To calculate
the whole State matrix 4·288 cc = 1152 cc and 9·1152 cc = 10368 cc for all nine InvMixColumns
transformations, during an AES decryption.

The Affine Transformation

As described in Section 2.1, the SubBytes transformation can be realized by a inversion
followed by an affine transformation. Figure 2.6 illustrates these two steps. In the first part
of the transformation the multiplicative inversion s−1

i,j in GF(28) is build of the processed
byte si,j. The inversion is followed by an affine transformation. The affine transformation

si,j Inversion in GF (28) s−1
i,j

Affine
transformation

s′i,j

Figure 2.6: Decomposed SubBytes transformation

is a polynomial multiplication of a constant matrix with the byte a = s−1 followed by a

2 No. of “1” in the binary representation

14 Chapter 2. AES – Advanced Encryption Standard

XOR with the constant c. The matrix and the constant c are given in the standard [FIP01].
Equation (2.12) denotes the affine transformation.

b7
b6
b5
b4
b3
b2
b1
b0

=

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

·

a7
a6
a5
a4
a3
a2
a1
a0

⊕

0
1
1
0
0
0
1
1

(2.12)

Because some of the countermeasures we will present calculate the inversion on the fly,
we also have to calculate the affine transformation. So we estimate the runtime for this
transformation. To calculate the runtime, we use the hypothetical processor model from
Section 2.3.1 and count the clock cycles (cc). To calculate one bit of the result byte b we need
8 multiplications (AND) and seven additions (XOR). This makes 8+7 = 15 cc for one result bit
and 8 ·15 cc = 120 cc for all eight resulting bits a0 to a7. The affine transformation is executed
160 times during a whole AES run. So this naive way would take us 160 · 120 cc = 19200 cc
just for the affine transformation.

Obviously, we can improve this implementation. If we take a closer look at the constant
matrix in (2.12) the first thing we see, is the pattern m = {11111000}2 in the first row. This
pattern repeats in the following rows, but every time rotated by one position to the right.
With the fact, that this calculation in done in GF(2), we can also save some computation. If
we are able to calculate the parity3 of a byte, we can safe the seven bitwise binary additions.
Therefore we multiply the current column m of the constant matrix with the byte a and just
set the output bit in b if the parity of the result is even. Algorithm 1 denotes this method.

Algorithm 1: Calculation of the affine transformation

Input: a
Output: b=aff_trans(a)
b = 0;1

m = {11111000}2;2

c = {01100011}2;3

for i = 0 to 7 do4

t = a⊗m;5

b = rotate_bit_left(b);6

b = b⊕ parity(t);7

m = rotate_bit_right(m);8

end9

b = b⊕ c;10

Now we one multiplication (AND) 1 cc, two rotations 2 cc, one parity calculation 1 cc and
one addition (XOR) 1 cc to calculate one bit of the result. For all eight bits we need 8 · 5 cc =

3 States whether the sum of all bits in the byte are even or odd.

2.3 Implementation Aspects 15

40 cc. In the last step, the constant c is added to the result what also takes one clock cycle.
To calculate the affine transformation for one byte this takes now 40 cc + 1 cc = 41cc. The
affine transformation part of a whole AES run, now takes 160 · 41 cc = 6560 cc.

Summary

Summarizing, in our processor model an AES encryption needs 240 cc for the ShiftRows
transformation, 800 cc for the SubBytes transformation, and 2304 cc for the MixColumns
transformation. Depending on the key calculation method, this gives either a total cycle
count of 4048 cc if separate key scheduling is used, or 4064 cc for the key on-the-fly method
for an entire AES encryption.

The AES decryption needs a bit more clock cycles, because the InvMixColumns is slower
than the MixColumns transformation. With the 10368 cc for an InvMixColumns transforma-
tion, the decryption takes 704 cc+240 cc+800 cc+10368 cc = 12112 cc for an AES decryption
with separate key scheduling.

2.3.4 8-bit Optimized Software Implementation

The discussed AES implementation can be improved by combining the ShiftRows and Sub-
Bytes transformation, see [Den07]. In addition, the inverse MixColumns transformation
needed for the decryption can be rewritten in a clock cycle saving way. This leads to an
optimized implementation as discussed in this section.

ShiftRows and SubBytes Combined

Since ShiftRows is only a permutation of the indices of the State matrix elements, it can be
combined with the SubBytes transformation. With this combination, we safe the 240 cc of
the ShiftRows transformation.

Improved inverse MixColumns

In [DR02], P. Barreto observes the following relation between the MixColumns polynomial
a(x), which has been defined in Equation (2.6), and the InvMixColumns polynomial a−1(x):

a−1(x) = ({04}16 · x2 + {05}16) · a(x) mod (x4 + {01}16) (2.13)

There are two important points. The Hamming weight of the coefficients is much smaller
than in the original Equation (2.9) and it has only half as many coefficients. In matrix
notation, the right part of Equation (2.13) becomes:

{02}16 {03}16 {01}16 {01}16

{01}16 {02}16 {03}16 {01}16

{01}16 {01}16 {02}16 {03}16

{03}16 {01}16 {01}16 {02}16

·

{05}16 {00}16 {04}16 {00}16

{00}16 {05}16 {00}16 {04}16

{04}16 {00}16 {05}16 {00}16

{00}16 {04}16 {00}16 {05}16

=

{0E}16 {0B}16 {0D}16 {09}16

{09}16 {0E}16 {0B}16 {0D}16

{0D}16 {09}16 {0E}16 {0B}16

{0B}16 {0D}16 {09}16 {0E}16

(2.14)

16 Chapter 2. AES – Advanced Encryption Standard

So the normal MixColumns transformation can be applied after a little precalculation of
the State matrix. For the constant multiplication of {04}16 two xtime calls and for the
multiplication by {05}16 two xtime calls plus one addition (XOR) are needed. Listing 2.4
denotes the preprocessing step. The word w (four bytes) is the current column of the State
matrix.

1 word ImvprovedInvMixColumns(byte w[4])
2 begin
3 u = xtime (xtime (w[0] ^ w [2])) ;
4 v = xtime (xtime (w[1] ^ w [3])) ;
5

6 w[0] = w[0] ^ u ;
7 w[1] = w[1] ^ v ;
8 w[2] = w[2] ^ u ;
9 w[3] = w[3] ^ v ;

10

11 MixColumn (w) ;
12 return w;
13 end

Listing 2.4: Preprocessing step for improved InvMixColumns

The precalculation needs four xtimes operations and six XOR operations, these are 4 ·5 cc+
6 ·1 cc = 26 cc. The precalculation is followed by a normal MixColumns transformation which
leads to 26 cc + 64 cc = 90 cc to calculate the inverse MixColumns transformation for one
column of the State matrix. A whole State S takes 4 ·90 cc = 360 cc and all nine MixColumns
transformations during an AES decryption take 9 · 360 cc = 3240 cc.

Summary

Summarizing, the optimized (8-bit) AES encryption takes 704 cc for the AddRoundKey trans-
formation, 800 cc for the combined ShiftRows and SubBytes transformation, and 2304 cc for
the MixColumns transformation. In total, this makes 3808 cc for one entire AES encryption
with TLU keys.

With the improved inverse MixColumns transformation, the AES decryption now needs
704 cc + 800 cc + 3240 cc = 4744 cc to decrypt a 128 bit ciphertext.

2.3.5 32-bit Software Implementation

Two of the discussed 8-bit transformations, namely the AddRoundKey and the MixColumns
transformation both benefit directly from a 32-bit register size. In the next sections, we
discuss this 32-bit implementation. In addition, there is a 32-bit implementation called T-
tables implementation, which combines the four transformations in precalculated tables.

The AddRoundKey Transformation

The AddRoundKey transformation can also be implemented to work simultaneously on a
whole column of the State matrix. Therefore it loads one word from the expanded key array

2.3 Implementation Aspects 17

and one word from the State matrix S and adds them. The resulting word is written back to
the State matrix. To process the State S, 4 ·4 cc = 16 cc are needed. All eleven AddRoundKey
transformations now take 11 · 16 cc = 176 cc.

The MixColumns Transformation

The MixColumns transformation can be speed up considerably on 32-bit processors. Gladman
mentioned in [Gla01] that equation (2.8a) to (2.8d) can be rewritten in such a way, that only
multiplications by two are necessary, e. g., {03}16 ⊗ s0,c = {02}16 ⊗ s0,c ⊕ s0,c. We get the
following equations:

s′0,c = s0,c ⊕ s1,c ⊕ s2,c ⊕ s3,c ⊕ s0,c ⊕ {02}16 ⊗ (s1,c ⊕ s0,c), (2.15a)

s′1,c = s0,c ⊕ s1,c ⊕ s2,c ⊕ s3,c ⊕ s1,c ⊕ {02}16 ⊗ (s2,c ⊕ s1,c), (2.15b)

s′2,c = s0,c ⊕ s1,c ⊕ s2,c ⊕ s3,c ⊕ s2,c ⊕ {02}16 ⊗ (s3,c ⊕ s2,c), (2.15c)

s′3,c = s0,c ⊕ s1,c ⊕ s2,c ⊕ s3,c ⊕ s3,c ⊕ {02}16 ⊗ (s0,c ⊕ s3,c), (2.15d)

where the index c denotes the current column of the State matrix. These equations can be
rewritten to:

s′0,c = s1,c ⊕ s2,c ⊕ s3,c ⊕ {02}16 ⊗ (s1,c ⊕ s0,c), (2.16a)

s′2,c = s2,c ⊕ s3,c ⊕ s0,c ⊕ {02}16 ⊗ (s2,c ⊕ s1,c), (2.16b)

s′2,c = s3,c ⊕ s0,c ⊕ s1,c ⊕ {02}16 ⊗ (s3,c ⊕ s2,c), (2.16c)

s′3,c = s0,c ⊕ s1,c ⊕ s2,c ⊕ {02}16 ⊗ (s0,c ⊕ s3,c). (2.16d)

The four bytes s0,c to s3,c can be stored successively in the word w. Listing 2.5 denotes the
multiplication by two within a whole word, called FFmulX. The word t, on the left hand side
(from the second XOR) in line four, extracts the highest bits from each byte within the word
w. The four individual bytes are now multiplied by two in parallel with a single left shift. On
the right hand side, the bytes of word w whose top bits are set are multiplied by {1B}16, the
AES reduction polynomial. This reduction ensures, that the four 8-bit results fits into the
32-bit register.

1 word FFmulX(word w)
2 begin
3 word t = w & 0x80808080 ;
4 return ((w ^ t) << 1) ^ ((t >> 3) |
5 (t >> 4) | (t >> 6) | (t >> 7)) ;
6 end

Listing 2.5: Parallel multiplication of each byte in word w by two

Since the four bytes s0,c to s3,c are stored successively in the word w, the four Equa-
tions (2.16a) to Equations (2.16d) can be calculated in parallel. Listing 2.6 denotes this
MixColumns transformation for one column of the State matrix. The resulting word contains
the four transformed bytes s′0,c to s′3,c.

18 Chapter 2. AES – Advanced Encryption Standard

1 word MixColumn(word w)
2 begin
3 w = rot1 (w) ^ rot2 (w) ^ rot3 (w) ^ FFmulX(rot1 (w) ^ w) ;
4 return w;
5 end

Listing 2.6: MixColumns transformation for one column of the State matrix

With Listing 2.5 and Listing 2.6 we can estimate the clock cycles for the MixColumns
transformation. The FFmulX function needs ≈ 11 cc. The MixColumn operation needs four
rotations, four XOR operations, one FFmulX operation which makes 19 cc. In addition it has to
load the word w from RAM and store the result back in RAM, this takes two clock cycles. One
MixColumns transformation needs four MixColumn operations which makes 4 · 21 cc = 84 cc
for one round and 9 · 84 cc = 756 cc for all nine MixColumns transformations.

The Inverse MixColumns Transformation

The 8-bit precalculation from Listing 2.4 can be formulated in such a way, that it uses 32-bit
operations. Listing 2.7 denotes the improved inverse MixColumns transformation for one
column w of the State matrix.

1 word InvMixColumn (word w)
2 begin
3 word tmp ;
4

5 tmp = rot2 (w) ;
6 tmp = tmp ^ w;
7 tmp = FFmulX(tmp) ;
8 tmp = FFmulX(tmp) ;
9

10 w = w ^ tmp ;
11

12 w = MixColumn(w) ;
13

14 return w;
15 end

Listing 2.7: Inverse MixColumns transformation with 32-bit operations

We can estimate the clock cycles for the InvMixColumns transformation with Listing 2.7.
For one column of the State matrix it takes one rotation, two XOR operations, two FFmulX

operations and one MixColumn operation. This makes 1 cc + 2 · 1 cc + 2 · 11 cc + 21 cc = 46 cc
for one column, 4 · 46 cc = 184 cc for a State and 9 · 184 cc = 1656 cc for all nine rounds.

Summary

Summarizing the optimized 32-bit AES encryption takes 176 cc for the AddRoundKey trans-
formation, 800 cc for the combined ShiftRows and SubBytes transformation, and 756 cc for

2.3 Implementation Aspects 19

the MixColumns transformation. In total this makes 1732 cc for the encryption.
The decryption, with 1656 cc for the InvMixColumns transformation, now needs 176 cc +

800 cc + 1656 cc = 2632 cc.

2.3.6 32-bit T-Tables Implementation

Daemon and Rijmen already showed in their original AES proposal, that AES can be im-
plemented very efficiently on 32-bit processors by combining the transformations SubBytes,
ShiftRows, MixColumns, and AddRoundKey for one column4. They define four tables each of
256 4-byte words (for 0 ≤ x ≤ 255) as follows:

T3[x] =

{02}16 ⊗ S-box(x)
{03}16 ⊗ S-box(x)

S-box(x)
S-box(x)

, T2[x] =

S-box(x)
{02}16 ⊗ S-box(x)
{03}16 ⊗ S-box(x)

S-box(x)

, (2.17a)

T1[x] =

S-box(x)
S-box(x)

{02}16 ⊗ S-box(x)
{03}16 ⊗ S-box(x)

, T0[x] =

{03}16 ⊗ S-box(x)
S-box(x)
S-box(x)

{02}16 ⊗ S-box(x)

. (2.17b)

An AES round can be built from the following four table lookups, one for every column in
the State matrix:

s3,c
s2,c
s1,c
s0,c

= T3[s3,c(3)]⊕ T2[s2,c(2)]⊕ T1[s1,c(1)]⊕ T0[s0,c(0)]⊕ kround ·4+c, (2.18)

where c(r) = c + r mod 4 with c(0) = c. Here c denotes the actual column index, and
c(r), r = 0, . . . , 3 denotes the new position after the ShiftRows transformation. With these
tables each column in the output State s′ can be computed by using four XOR operations
together with one word from the key schedule and four table-lookups that are indexed using
four bytes from the input State. We need four XOR and five TLU per column. Since we
have four columns per State matrix, 4 · 4 = 16 XOR, 4 · 4 = 16 TLU (ROM) and four TLU
(RAM) per round are needed. This makes 16 cc + 2 · 16 cc + 4 cc = 52 cc for one round and
10 · 52 cc = 520 cc for the whole algorithm (plus additional key scheduling).

One table consumes 4 ·256 bytes = 1024 bytes ROM, and for the four tables 4 ·1024 bytes =
4096 bytes are needed. In the last round, the MixColumns is not present. This means that
different tables are required for the last round. If we also implement the last round as a table,
we need 2 · 4096 bytes = 8192 bytes of table space altogether.

If we take a closer look at the tables, it can be recognized that the structure of the four
tables is closely related to each other. The columns are rotated by one, two and three bytes,
since Ti(x) = rot(Ti−1(x)), i = 0, . . . , 3, where the function rot() rotates the bytes in the
column cyclically by one position. So, the space needed for the tables can be reduced by a
factor of four at the expense of three additional cyclically rotations per round.

4 As far as we know, the first implementation using this structure was written by Rijmen, Bosselaers, and
Barreto according to [BS08].

20 Chapter 2. AES – Advanced Encryption Standard

2.3.7 32-bit Implementation with Transposed State

Bertoni et al. [BBF+03] had the idea to transpose the State matrix S in such a way, that
it can be processed by columns instead of rows. Therefore they have restructured the Mix-
Columns, the ShiftRows, and the round key generation for en-/decryption. Since the SubBytes
transformation works on each byte individually, they left it as it is.

The consequence of the transposition is that the new version of the InvMixColumns achieves
a much higher speed gain. In fact, the transposed InvMixColumns requires seven doublings
and 27 additions. The authors report a cycle count of 2047 cc for decryption on an ARM7TDMI.
The encryption becomes a bit slower than the 32-bit reference implementation of Gladman.
For encryption they need 1675 cc. Their reference implementation from Brian Gladman needs
2763 cc for decryption and 1641 cc for encryption on the ARM7TDMI.

2.3.8 Hardware Implementations

There has also been much effort put in efficient hardware implementations of AES: From the
8-bit implementation straight from the standard to 32-bit implementations using a 32-bit data
path up to high-speed implementations with a 128-bit data path. For every implementation,
very much care has to be given to the S-box implementation, both for performance and for
security reasons.

Rijmen suggested in 2001 to use subfield arithmetic for computing the inverse part of the
SubBytes transformation in [Rij01]. This idea was extended by Satoh et al. in [SMTM01] by
using sub-subfields, the so-called “composite field” or “tower field” approach, which resulted
in the smallest AES circuit at that point. The “composite field” approach utilizes that a
finite field GF(2k) with k = n · m can also be represented as GF((2n)m). Later, Canright
[CB09] improved this method again by a carefully chosen normal basis, which results in the
most compact S-box up to date.

As we will see, some ideas from the “composite field” approach can be reused for our SCA
resistant AES implementation. So we will give a short overview to gain insight into the
“composite field” arithmetic.

Composite Fields

We have seen in Section 2.2, that the finite field GF(28) can be seen as an extension field
of GF(2) and its elements are represented as bytes. However, we can also see GF(28) as a
quadratic extension of the field GF(24), which is far better suited for hardware implemen-
tations [Paa94, SMTM01]. We call this field composite field. In particular, composite field
inversions are used to create compact AES hardware implementations [RDJ+01, SMTM01,
MS03, WOL02].

We can represent every element a ∈ GF(28) as a linear polynomial ahx + al with the
coefficients ah and al being elements of the field GF(24). We refer to this polynomial as two-
term polynomial. Both coefficients of this polynomial have four bits. The finite field GF(28)
is isomorphic to the field GF((24)2). For each element in GF(28) there exists exactly one
element in GF((24)2). The following field polynomial, which is used to define the quadratic
extension of GF(24), is taken from [WOL02, Tri03].

2.3 Implementation Aspects 21

Two two-term polynomials can be added by adding their corresponding coefficients:

(ahx+ al)⊕ (bhx+ bl) = (ah ⊕ bh)x+ (al ⊕ bl). (2.19)

For the multiplication and inversion of two two-term polynomials a modular reduction
step is required, to ensure that the result is again a two-term polynomial. The irreducible
polynomial n used for the reduction is given by:

n(x) = x2 + x+ {E}16. (2.20)

The coefficients of n are elements of GF(24) and written in hexadecimal notation. To ensure,
that the product of two coefficients lies in GF(24), i. e., a(x)⊗ b(x) := a(x) · b(x) mod m4(x)
with a, b ∈ GF(24), the irreducible reduction polynomial m4 is used, which is given by:

m4(x) = x2 + x+ 1. (2.21)

The inversion in GF((24)2) can be computed by using only the operations which have been
defined above in GF(24):

(ahx⊕ al)−1 = a′hx⊕ a′l (2.22a)

a′h = ah ⊗ d′ (2.22b)

a′l = (ah ⊕ al)⊗ d′ (2.22c)

d = ((a2h ⊗ {E}16)⊕ (ah ⊗ al)⊕ a2l) (2.22d)

d′ = d−1 (2.22e)

To calculate the inverse of d Oswald et al. shift this element down to GF (22) in [OMP04],
where they compute the inversion on a dedicated hardware. This is feasible in hardware but
it is not efficient in software on a microcontroller. Instead the inversion of d can be efficiently
realized as a lookup table with 16 elements from GF (24).

If the inversion part of SubBytes is calculated with the composite field method, the big
lookup table for the inversion in GF(28) with 256 elements can be replaced by the lookup
table for the inversion in GF(24) with 16 elements.

2.3.9 Comparison of Different Implementation Options

In the last sections, several options to implement AES were discussed. Two main possibilities
to write an 8-bit software implementation of AES have been pointed out.

In the first method, all round keys are calculated in advance, Table 2.1 line one, three,
four, five and six. A method with separate key scheduling can be recommended, if there is
enough RAM to store the 176 bytes for the round keys. The separate key scheduling especially
pays off, if two or more blocks of 128 bit are encrypted5. An AES 128-bit encryption with
separate key scheduling takes 3808 cc on an 8-bit processor (line three) and 1732 cc on a 32-bit
processor (line four).

The second method is to implement an embedded key scheduling. Here the round keys are
calculated when they are needed, on-the-fly, and afterwards they are discarded. This leads

5 Because the pre-computation of the expanded key (the key scheduling) has only to be done once.

22 Chapter 2. AES – Advanced Encryption Standard

to a very small RAM consumption. Table 2.1 denotes in line two, that this implementation
needs 4064 cc and only 16 bytes RAM (for the last used round key). If the processor used has
a large number of registers, everything can be calculated without the use of RAM. Thus, the
on-the-fly method can be preferred on architectures where only very limited RAM is available.

On a 32-bit processor, AES can also be implemented with almost only table lookups. Ta-
ble 2.1 refers to this method as T-tables. An 128-bit encryption with the T-tables approach
takes approximately 520 cc (with separate key scheduling). The T-tables implementation
needs 8192 bytes of ROM, to store the four pre-calculated tables that are needed for the
encryption, and additional 8192 bytes for the decryption.

The first three entries in the table are to get a rough feeling of the space and cycle consump-
tion of AES. In the second part of the table they can be compared with real implementations.
We notice that there are big clock cycles differences between different implementations even
if they are on the same architecture (8 or 32-bit). So we just compare the ratio between the
cycle counts for an implementation given from the same author.

The cAESar implementation from [HKQ99] is one of the first 8-bit implementations we
found. The used processor is not clearly described in the paper. The implementation is
completely written in Assembler and needs 2889 cc for one encryption. The round keys are
generated on-the-fly.

The second implementation is from Akkar/Giraud in 2001 [AG01] (line 8). Their non-
optimized implementation was done in assembly code using an 8-bit processor. In their paper,
they specify the runtime with 18.1 ms at 5 MHz which results in 90500 cc for the encryption
of a 128-bit message. The whole implementation needs 730 bytes ROM and 41 bytes of RAM.

In [HOM06], Herbst et al. compare their SCA resistant 8-bit implementation with one
self made older unprotected one from the Institute for Applied Information Processing and
Communication (IAIK) [IAI06] they work at. This unprotected implementation needs 4427 cc
for an encryption. The second unprotected implementation they refer to, is an implementation
from Christian Röpke [R0̈3] on an ATmega163, which needs 7498 cc for an encryption. These
two clock cycle counts are interesting for us, because we want use to some countermeasures
from Herbst et al.

Bernstein and Schwabe [BS08] have written the fastest 32-bit implementation we have
found so far. For achieving these results, they have made heavily optimized versions for the
underlying 32-bit micro architecture and utilized the T-tables approach. On an Intel Core 2
Quad with, e. g., combined load and XOR operations, their implementation needs ≈ 169 cc
for the encryption. In their clock cycle calculation they ignored the costs for computing the
round keys.

The main requirement for our AES implementation is to be small in terms of RAM and
ROM consumption. For this reason, we do not take the 32-bit T-tables approach. Because a
typical AES implementation will have a fixed key and we assume that more than one 128-bit
block is encrypted during one AES run, we decided us for the separate key scheduling method.
Therefore we will take the optimized 32-bit implementation (line four) and try to implement
it on the TriCore architecture as fast as possible. The RAM consumption in Table 2.1 does
not contain the 16-byte State matrix.

2.3 Implementation Aspects 23

No. Implementation ROM RAM Encryption Encryption
(bytes) (bytes) (clock cycles) (clock cycles/byte)

Estimated Values
1 8-bit w/separate key scheduling 256 176 4048 253
2 8-bit w/key on-the-fly 256 16 4064 288
3 8-bit optimized 256 176 3808 238
4 32-bit optimized 256 176 1732 108.25
5 32-bit optimized (dec) 256 176 2632 164.5
6 32-bit T-tables 8192 176 520 32.5

8-bit Software implementations
7 cAESar [HKQ99] 256 0 2889 181
8 Akkar / Giraud [AG01] 730 41 90500 5656
9 Christian Röpke [R0̈3] NA NA 7498 469
10 IAIK [IAI06] NA NA 4427 277

32-bit Software implementations
11 Transposed State [BBF+03] 256 0 1675 104.69
12 Bernstein / Schwabe [BS08] NA 176 169 10.57
13 Tillich [THM07] NA 176 1637 102

Table 2.1: Comparison between different unprotected AES software implementations

Chapter 3

Side-Channel Analysis

In the classical “cryptanalysis”, a cryptographic algorithm (cipher) is an abstract mathemati-
cal object, which turns some plaintext input data into encrypted output data, parameterized
by a key. Here, Kerckhoffs’ law [Ker83] is a main rule for everybody. It means, that the
security of a cryptosystem should not depend on the secrecy of the algorithm. All security is
in the cryptographic key, which therefore needs to be carefully protected. In classical crypt-
analysis the security of a cipher is investigated by mathematical proofs and analysis of the
algorithm.

However, a cipher has to be implemented in a program, that will run on a given processor
in a specific environment like a smartcard or embedded system. These systems have specific
physical characteristics. If these physical characteristics deliver information about the secret
key involved in the operation it is called a side-channel. Typical side-channels are:

• the time, an algorithm (or part of it) needs for execution,

• the power consumption of the device,

• the electromagnetic field of the device during its processing, and

• the specific behavior after injecting a fault.

The side-channel attacks attempt to recover the secret key by parts. By only looking at
small parts of the key, exhaustive key search on these sub-keys becomes possible. This process
is then repeated until the full key is found. In the following sections, we take a closer look at
the first two side-channels and how they can be used to obtain information about the secret
key.

3.1 Timing Analysis

If the runtime of a cryptographic device is key dependent, it can be used as a side-channel.
Kocher introduced this idea in [Koc96]. A formalized description can be found in [HMS00],
we will give here a short overview. For example, we want to discover the private exponent e
in the following calculation:

y = xe mod n. (3.1)

We assume, that the calculation is done with the Square-and-Multiply method (left-to-right
binary exponentiation) which is described in Algorithm 2. We see, that the running time of
the algorithm directly depends on the bits e = (ep, . . . , e0) of the secret exponent where p+ 1
denotes the total number of bits in the exponent. If a bit of the exponent is one, then an

25

26 Chapter 3. Side-Channel Analysis

additional multiplication by the base x and reduction by n is performed, which will take a
bit more time.

Algorithm 2: Left-to-right binary exponentiation (Square-and-Multiply)

Input: x, n, e = (ep,...,e0)2

Output: y = xe mod n
y = 1;1

for i = p down to 0 do2

y = y · y mod n;3

if ei = 1 then4

y = y · x mod n;5

end6

end7

Let us assume, that we already know the first bits ep, . . . , em−1 of the exponent. Bit em
will be attacked. We measure the runtime Ti, i = 1, . . . , N , for N modular exponentiations
with random (but known) base xi:

Ti = T (xei mod n). (3.2)

Next we assume that the unknown bit em is zero. We compute the execution time T 0
i,m via

an emulation of the runtime until bit em is reached. Now we build the empirical variance1

V0 := Var(Ti − T 0
i,m). We do the same for em = 1 and build the empirical variance V1 :=

Var(Ti − T 1
i,m). Then we decide whether the exponent bit em was zero or one:

em =

{

0 if V0 < V1,

1 else.
(3.3)

This method works, because a wrong guess of em leads to an increase of the empirical
variance, if we can exactly simulate the execution time. Note that we do not require new
measurements for the other unknown bits. We just repeat the steps for the next unknown
bit of the exponent e.

We see, that this attack is applicable, since intermediate values of the algorithm we attack
depend on small parts of the key and lead to a different timing. This fact is utilized in other
attacks, too. Since we know of the existence of those attacks, we will show in the following a
method to verify, if our implementation is vulnerable to timing attacks.

General countermeasures against timing attacks are to modify the algorithm in a way, that
it:

• always has a constant, thus key-independent, runtime,

• or masking the data, for example, with Chaum’s blinding method presented in [Cha82].
Here the exponentiation is done with a value ẽi = λei, λ random, unknown to the
attacker. Thus, the attacker cannot simulate the execution time T bi,m.

1 We define the empirical variance as: v2 = 1

N

∑N

i=1
(ti − t)

2, where t is the mean 1

N

∑N

i
ti.

3.1 Timing Analysis 27

3.1.1 Evaluation of Timing Analysis Resistance

The Square-and-Multiply algorithm has demonstrated, that cryptographic algorithms can
leak critical information during runtime. This example showed a very clear key-dependent
runtime behavior. Often this behavior is not so clear, i. e., there could be even very small
timing differences in the so-called Square-and-Always-Multiply Algorithm, a “fixed” version of
Square-and-Multiply where a multiplication is performed regardless of the exponent bit. The
“useless” result of this multiplication is then discarded. Obviously, in this case the timing
difference between em = 0 and em = 1 is very small (if there is any). In order to detect
such small variations we cannot rely on simple mechanisms, we need a thorough statistical
background. Therefore, to verify if our AES implementation leaks key dependent information,
some statistical tests are performed.

In the following, we assume that the running time of the algorithm is a random variable X
which is distributed like a Gaussian distribution2, i. e., X ∼ N(µX , σ

2
X) with mean µX and

variance σ2
X .3

For the statistical analysis, we will perform runtime measurements with different plaintexts
and different keys. We define some measurement sets with, for example, N = 1000 measure-
ments per set. A set contains the plaintext, key and running time for an encryption run. Since
the runtime varies and the measurement process is not perfect, there are always differences
in the measured time.4 The goal of the statistical tests, to be introduced in a minute, is to
verify if these outliers or differences are systematic or not, i. e., to test if we can distinguish
the measurement sets at hand of their runtime.

3.1.2 Two Sample T-Test

The density function of a t-distributed random variable X with m ∈ N degrees of freedom5 is
given by

fX,m(x) =
Γ(m+1

2)√
πm Γ(m2)

(

1 +
x2

m

)−
m+1

2

for x ∈ R, (3.4)

where Γ denotes the Gamma function, which is defined the following way

Γ(1) = 1, Γ(n+ 1) = n! for n ∈ N

and can be generalized to arbitrary real arguments x ∈ R. For sufficiently large m, the
density function of the t-distribution approximates the Gaussian normal distribution N(0, 1),
i. e., fX,m

m→∞−−−−→ N(0, 1).

If X is an N(0, 1)-normal distributed random variable and Y is a chi-squared (χ2) dis-
tributed random variable with m degrees of freedom and both random variables are indepen-

2 For further details to statistics, e. g. probability density functions, statistical tests, etc., we refer to any
standard statistics book, for example, [WG04] [Bos98].

3 More exactly, the running time of the algorithm for a deterministic input is composed of a deterministic
part and a random part which is caused by algorithmic noise, cache and pipelining behavior etc. We assume
that this random part is normally distributed.

4 For example, a cache could be flushed while we take a measurement set, which could result in a different
running time for this specific measurement.

5 describes the number of values in the final calculation of a statistic that are free to vary

28 Chapter 3. Side-Channel Analysis

dent, then the random variable

T =
X
√

Y
m

is t-distributed with m degrees of freedom.
Now we can formulate the two sample t-test: Let Xi, i = 1, . . . ,m, and Yj, j = 1, . . . , n, be

independent and identically distributed (i.i.d) random variables, respectively, with

Xi ∼ N(µX , σ
2
X) and Yj ∼ N(µY , σ

2
Y)

with equal but unknown variances σ2
X = σ2

Y . Under the hypothesis H0 : µX = µY , the test
characteristic

T =
X − Y
SP

√

mn

m+ n
(3.5a)

with

S2
P =

1

m+ n− 2

(

(m− 1)S2
X + (n − 1)S2

Y

)

, (3.5b)

S2
X =

1

m− 1

m
∑

i=1

(Xi −X)2, (3.5c)

S2
Y =

1

n− 1

n
∑

j=1

(Yj − Y)2 (3.5d)

has a t-distribution with m+ n− 2 degrees of freedom.
To test, if both random variables come from the same population, we make the following

two hypotheses:

H0 : µX = µY and H1 : µX 6= µY . (3.6)

With a significance level α, for example, α = 0.05, the hypothesis H0 can be rejected, if

|T | ≥ tm+n−2;1−α
2
, (3.7)

where tm+n−2;1−α
2

denotes the 1 − α/2 quantile of the t-distribution with m + n − 2 degrees
of freedom.

Otherwise we have to say, that we have insufficient evidence to reject the null hypothesis.

3.1.3 Fisher’s F-Test

With the t-test we test the mean values of our measurements under the assumption that the
unknown variances are the same. To statistically test the observed variances, the so-called
Fisher F-test can be used which will be described in this section. With the F-test we can
verify statistical moments of order two, which are usually much smaller and more difficult to
detect.

Let us assume two normally distributed random variables. To test if the variance of one
random variable equals the variance of another random variable with unknown, but not
necessarily equal mean values, we can use the F-test.

3.1 Timing Analysis 29

The density function of an F-distributed random variable X with (m,n)-degrees of freedom,
m,n ∈ N, is given by

fX(x) =

Γ(m+n
2

)m
m
2 n
n
2

Γ(m
2

)Γ(n
2

) · x
m
2 −1

(n+mx)
m+n

2

for x > 0,

0 for x ≤ 0.
(3.8)

If X and Y are two independent χ2-distributed random variables with m and n degrees of
freedom, X ∼ χ2

m, Y ∼ χ2
n, then the random variable

T =
X/m
Y/n

is F-distributed with (m,n)-degrees of freedom.
Let Fm,n;α be the quantile with the order α. For large n the quantile of the F-distribution

with (m,n)-degrees of freedom converges to the quantile of the χ2-distribution withm-degrees
of freedom multiplied with the factor 1/m:

Fm,n;α
n→∞−−−→

χ2
m;α

m
.

Now we are able to formulate Fisher’s F-test: Let Xi, i = 1, . . . ,m, and Yj , j = 1, . . . , n,
be independent and identically distributed (i.i.d) random variables, respectively. We assume,
that the random variables are normally distributed

Xi ∼ N(µX , σ
2
X) and Yj ∼ N(µY , σ

2
Y)

with µX and µY unknown. Under the hypotheses H0 : σ2
X = σ2

Y , the test statistic

T =
S2
X

S2
Y

(3.9a)

with

S2
X =

1

m− 1

m
∑

i=1

(Xi −X)2, (3.9b)

S2
Y =

1

n− 1

n
∑

j=1

(Yj − Y)2 (3.9c)

is F-distributed with (m− 1, n− 1) degrees of freedom.
We make the following hypotheses

H0 : σ2
X = σ2

Y and H1 : σ2
X 6= σ2

Y . (3.10)

With a significance level α, for example, α = 0.05, we can reject the hypothesis H0, if

|T | ≥ Fm−1,n−1;1−α
2
. (3.11)

Otherwise we have to say, that we have insufficient evidence to reject the null hypothesis.

30 Chapter 3. Side-Channel Analysis

3.2 Simple Power Analysis

At Crypto ’99, Kocher et al. [KJJ99] introduced the so-called power analysis attacks. Every
hardware device which performs cryptographic operations can leak information by its power
consumption. A common example of an algorithm which might be vulnerable to a Simple
Power Analysis (SPA) is the Square-and-Multiply algorithm which was discussed above. Be-
cause the algorithm goes sequentially through the bits of the exponent, the difference whether
a multiplication takes place or not can be directly observed in the power trace. The power
trace can be obtained by measuring the power consumption. This can be done by adding a
small resistor in series with the power or ground of the attacked device. The current, which
can be derived from the voltage across that resistor divided by the resistance, yields to the
power trace. The length of the power trace is the product of the time span in seconds with
the sampling rate. A simple power analysis is typically performed on one single power trace.
However, multiple power traces can be recorded while the device performs the same operation
on the same data several times. Computing the mean of those power traces will reduce the
noise. Messerges has observed several sources for noise in [Mes00]. Sources for noise are, for
example, at the clock edges, during the quantization and algorithm noise.

Building a good measurement setup should not be underrated in side-channel attacks. From
an attackers viewpoint it is important, to avoid noise as much as possible. Also, if multiple
traces for the same operation were recorded, they have to be aligned exactly in time. This can
be achieved with an exact trigger and alignment techniques. Hermann Seuschek has analyzed
the different types of noise in his master thesis [Seu05] and gives a detailed explanation on
how to minimize these effects for an optimal measurement setup.

3.3 Differential and Correlation Power Analysis

The differential power analysis (DPA) exploits the relationship between the processed data
and the power leakage of multiple traces with different input data. For a DPA, the detailed
description of the implementation of the algorithm is not needed, which makes it a very
powerful attack. It was suggested by Kocher [KJJ99] and later formalized by Messerges et
al. in [MDS99]. The four following requirements, which are necessary for a first-order DPA
attack on AES, can be formulated:

1. The attacker needs physical access to the device to measure the power consumption
while it performs several en-/decryptions;

2. We need to know either the plaintext or the ciphertext of the algorithm (attack the first
or the last rounds of the algorithm), we refer to it as the processed data vector d =
(d1, . . . , di, . . . , dD), where di denotes the plaintext or ciphertext of the ith decryption
or encryption run and D is the total number of runs.

3. An intermediate result that occurs during a de-/encryption which needs to be a function
of the processed data di and a small part of the key, which is denoted as k∗.

4. The power consumption of the device has to depend on the processed data. We re-
fer to the measured power trace that corresponds to the processed data di as ti =
(ti,1, . . . , ti,T), where T denotes the length of the traces. We obtain a trace for each run
so this results in the power trace matrix T with size D × T .

3.3 Differential and Correlation Power Analysis 31

Detailed instructions on how to perform a DPA can be found in [MOP07]. The basic idea for
a DPA is, to make a hypothesis about one ore more bits of the secret key. Therefore, we chose
an intermediate function, which depends on the processed data di and a small part of the key
k∗. Since the small part of the key is unknown, all possible values k∗ = (k1, . . . , kj , . . . , kK) for
k∗ have to be processed, where the index j denotes the jth possible key and the index i denotes
the ith en-/decryption. Now the hypothetical intermediate values vi,j can be calculated for all
D de-/encryption runs and for all K possible key hypotheses. This results in a matrix V with
size D ×K, where the column j contains the intermediate results that have been calculated
with the key hypothesis kj . Now, we can derive the hypothetical power consumptions H
from the hypothetical intermediate values via a power model. The better the power model
matches the actual power consumption characteristics of our hardware device the less power
traces are needed. The most common power models are:

• the bit model (LSB-Least Significant Bit):

hi,j = LSB(vi,j), (3.12)

• the Hamming-weight (HW) model:

hi,j = HW(vi,j), (3.13)

• the Hamming-distance (HD) model:

hi,j = HD(vi,j , di), and (3.14)

• the zero-value model. Here we assume, that the power consumption for the data value
0 is lower than for all other data values:

hi,j =

{

0 if vi,j = 0

1 if vi,j 6= 0.
(3.15)

The final step is to compare the measured power traces T with our hypothetical model
H. In [KJJ99], the authors measure correlations indirectly by computing the difference of
means. In this thesis, we describe how the attack is performed using the Pearson correlation
coefficient. A detailed description is in the Appendix. We estimate each value ri,j with

ri,j =

∑D
d=1(hd,i − h̄i) · (td,j − t̄j)

√

∑D
d=1 (hd,i − h̄i)2 ·∑Dd=1 (td,j − t̄j)2

i = 1, . . . ,K, j = 1, . . . , T. (3.16)

With the resulting matrix R of correlation coefficients, we can determine if the hypothetical
power consumption H and the measured power traces T are correlated. In Equation (3.16),
h̄i and t̄j denote the mean values of the columns hi in H and tj in T. Every row in matrix R is
the correlation coefficient over time for a specific key hypothesis. If the key hypothesis (“key
guess”) was wrong, then the hypothetical power consumption and the power trace should be
uncorrelated; i. e., we see just noise. If the key guess is correct, we should see a peak in the
correlation curve.

A second order DPA attack considers multiple points simultaneously within the same power
trace t. These points belong to two different intermediate values, e. g., a mask value m and
the hidden intermediate value d⊕m. The knowledge of either m or d⊕m alone is not of any
use to the attacker. But if the attacker correlate both values, he can gain some information
on d. A detailed description of higher order DPA can be found at [JPS05].

Chapter 4

Side-Channel Resistant AES Implementation

A main criteria for the feasibility of a power analysis attack is, that the part of the cipher
which is attacked only depends on a small amount of key bits. AES offers exploitable functions
like the first and the last AddRoundKey. They both depend only on a small amount of
key bits. AES1 provides another interesting characteristic which makes a power analysis
attack even more applicable: The non-linear SubBytes transformation. This is because this
transformation is non-linear and therefore if there is one bit wrong in the key hypothesis
several bits of the output differ from the calculated intermediate result. On average, half of
the bits calculated based on an incorrect key hypothesis differ from the actual intermediate
result – independently from the number of incorrect bits in the key hypothesis. This improves
the ability of finding the right key during a SCA enormously. Figure 4.1 depicts the initial
AddRoundKey operation (XOR) before the first round and the first SubBytes transformation
for the byte s0,0 of the State matrix in round one. So an important task will be to protect

⊕

s0,0 (8-bit from the plaintext, known)

k (8-bit from the key, unknown)

SubBytes

s′0,0 (8-bit result)

Figure 4.1: Initial AddRoundKey followed by the first SubBytes transformation in round one for one
byte of the State matrix

the SubBytes transformation in the side-channel resistant implementation.

4.1 Random Bits

All following countermeasures need random bits. The Bundesamt für Sicherheit in der In-
formationstechnik (BSI) describe four classes for the quality of deterministic random number
generators in [BSI01]. From the “weak” class K1, where the random numbers containing
no identical consecutive elements with a high probability, to the “strong” class K4, where it
should be impossible for an attacker to calculate or guess from an inner state of the generator
any previous numbers in the sequence of random numbers.

1 like other ciphers with a diffusion step, for example DES

33

34 Chapter 4. Side-Channel Resistant AES Implementation

To mask the SubBytes transformation, it is very important to generate high class random
numbers for the mask values, because if the distribution of the random mask has a bias
with respect to the uniform distribution, the masked value leaks information, which can be
exploited during a DPA, see [CGPR08].

So the random number generator should at least fulfill the requirements of a K2 random
number generator for the masked values. This class ensures, that the random numbers passed
statistical tests and are uniformly distributed. For generating those qualitative good random
values, the IAIK suggests the Grain-80 stream cipher, which can also be used as random
number generator. The Grain-80 is optimized for hardware implementations. In practice the
AES implementation will get the random numbers from outside (a hardware random number
generator), Grain-80 is only be used to generate random numbers for the final measurements
on the development board.

4.2 Countermeasure: Masking

During a power analysis attack, the attacker has to make a hypothesis about the power con-
sumption of the device performing the attacked operation. Our goal is, to make the real
intermediate values of the executed transformation independent from their power consump-
tion. This can be realized by masking them. With masking we conceal every intermediate
value with a random value m, the so-called mask. The attacker does not know the masking
values and thus cannot compute meaningful hypothesis on the power consumption. As a
result, the side-channel leakage of all intermediate, key-dependent values, does not correlate
with the corresponding unmasked value. We can easily reproduce the propagation of the mask
throughout the linear parts of AES in order to remove the mask at the end of the cipher. For
the non-linear parts, namely the SubBytes transformation, we require considerable more effort
for the mask correction after this transformation.

In the following subsections, we will discuss the different masking schemes in terms of space
consumption, security, and speed. For all masking schemes, the runtime of the key scheduling
is excluded. The 176-byte RAM consumption for the expanded round key is included in the
estimated RAM value.

4.2.1 Additive Masking

Additive masking masks a value x with a random value m by adding (XORing) them, xm =
x ⊕ m. The mask can be removed by adding the mask value again, x = xm ⊕ m. This is
an easy but very efficient masking scheme, since the masked value xm is not distinguishable
from a random value if the mask value m is a random value.

The “problem” with AES is, that the SubBytes transformation is a non-linear operation,
which means SubBytes(si,j ⊕ m) 6= SubBytes(si,j) ⊕ SubBytes(m). So additive masking
cannot be easily applied “out of the box”. The mask value m cannot be easily removed
from the intermediate value s′i,j after the transformation without modifying the SubBytes
transformation.

For additive masking, the whole lookup table (S-box) has to be recomputed. The input
mask m masks the index and the output value mx masks the actual data according to
Algorithm 3. This masking method was published first in [Mes00].

4.2 Countermeasure: Masking 35

Algorithm 3: Computation of the masked AES SubBytes transformation as proposed in
[Mes00]

Input: m,mx
Output: MaskedSubBytes(si,j ⊕mx)=SubBytes(si,j)⊕m
for i = 0 to 255 do1

MaskedSubBytes(i⊕mx)=SubBytes(i)⊕m;2

end3

With one mask value pair m and mx for all intermediate values, we need additional
256 bytes RAM for the new masked S-box and two random bytes for the input mask m and
the output mask mx. With the expanded key that makes 176 bytes + 256 bytes + 2 bytes =
434 bytes.

The precalculation is made up of 256 additions (XOR) to mask the table index, 256 table
lookups (TLU) to read the unmask S-box values from ROM, 256 additions (XOR) to mask
the table entries and, finally, 256 write operations to store the masked table in RAM. This
takes 256 cc + 2 · 256 cc + 256 cc + 256 cc = 1280 cc for computing the new S-box.

With four mask value pairs a whole column of the State matrix can be masked. The
advantage is, that during the MixColumns transformation, which works on a whole column
(4 bytes) of the State matrix, all intermediate values are mask with different masks. Therefore
we need eight random bytes and 4 · 256 bytes = 1024 bytes for the new lookup tables, which
results (with the expanded key) in 176 bytes + 8 bytes + 1024 bytes = 1208 bytes RAM. The
precalculation overhead for four different masks leads to 4 · 1280 cc = 5120 cc for computing
the new S-boxes. We can assume the runtime of the normal SubBytes transformation, since
during an AES encryption, we just have to index the correct masked table for the TLU. In
addition we have to mask the intermediate value from the State matrix with the input mask
before and with the output mask after the transformation. That makes additional 2 cc per
byte of the State matrix and 2 · 160 cc = 320 cc for the whole encryption. Summarizing,
this scheme needs for all ten rounds 320 cc + 1280 cc = 1600 cc with one masked S-box and
320 cc + 5120 cc = 5440 cc with four masked S-boxes.

To mask the 32-bit T-tables implementation we would require 32-bit mask values, since
we now operate on whole rows, instead of bytes from the State matrix. Masking the tables
with one input– and one output–32-bit mask requires eight random bytes for the masks and
8192 bytes RAM for the eight masked T-tables (four for the first nine rounds and four for
the last round). In total it makes (with the expanded key) 176 bytes + 8 bytes + 8192 bytes =
8376 bytes. The precalculation is made up of 256 additions (XOR) to mask the 32-bit table
index, 256 table lookups (TLU) to read the unmask values from the tables (ROM), 256
additions (XOR) to mask the table entries and finally 256 write operations to store the
masked table 32-bit values in RAM. This costs us 256 cc+2 ·256 cc +256 cc+256 cc = 1280 cc
for the precalculation of the masks and in total 520 cc + 1280 cc = 1800 cc for the whole AES.

Masking all four columns of the State matrix with the T-tables implementation would
require 8 · 4 bytes = 32 random bytes for the masks and 4 · 8192 bytes = 32768 bytes for the
masked tables. In total that makes with the expanded key 176 bytes+32 bytes+32768 bytes =
32972 bytes RAM. The precalculation of the tables take 4 · 1280 cc = 5120 cc and in total
520 cc + 5120 cc = 5640 cc for the whole AES.

36 Chapter 4. Side-Channel Resistant AES Implementation

4.2.2 Transformed Masking Method

In [AG01], Akkar and Giraud do not use a lookup table for the SubBytes transformation.
Instead, they calculate the SubBytes transformation. Thereby, they mask the intermediate
value si,j multiplicative during the inversion part of the SubBytes transformation.

Figure 4.2 shows the masked version of the SubBytes transformation where a modified
inversion function is used, which conserves the mask value. We will discuss the realization of
this modified inversion in the following.

si,j ⊕m Modified Inversion
in GF (28)

s−1
i,j ⊕m

Affine
transformation

s′i,j ⊕m′

Figure 4.2: SubBytes transformation with masking countermeasure

The idea of Transformed Multiplicative Masking (TMM) is to add a new multiplicative
mask Yi,j to the intermediate value si,j and remove the additive maskMi,j. The intermediate
value is now masked with only the multiplicative mask. The advantage of the multiplicative
mask is, that this mask can be removed after the inversion of the masked intermediate value
easily by inverting the multiplicative mask Yi,j separately and then multiply that inverted
mask with the inverted masked value. In Figure 4.3 we see on the left side, how the transition
between additive and multiplicative masking is done. After the inversion, we can add the
additive mask again and then remove the multiplicative mask. As result we get the inverse
of the intermediate value si,j additively masked with the mask Mi,j . This countermeasure is
very costly since it contains an additional inversion and four multiplications in GF(28). A
multiplication is marked with a dark gray color in Figure 4.3.

If we calculate the multiplication with the binary multiplication method, as it is suggested in
[FIP01], we need for the multiplication at average 16 shift operations and 8 XOR operations,
which makes 16 cc + 8 cc = 24 cc.

For an inversion of one byte from the State matrix with this method, we need four multipli-
cations, two XOR, and two inversions (TLU). This costs us 4 ·24 cc + 2 ·1 cc+ 2 ·2 cc = 102 cc.
To invert the 10 · 16 bytes = 160 bytes for all ten rounds, we need 160 · 102 cc = 16320 cc.

Akkar and Giraud give a cycle count of 293500 cc per encryption, which is about three
times more than in the unprotected implementation we have seen in Section 2.3, which was
90500 cc.

In [TSG02], Trichina et al. have published a simplified variant of the algorithm which is
shown in Figure 4.3 on the right hand side. The scheme is equivalent to the original masking
scheme but the authors here use the same mask value for the multiplicative masking (Y=M).

For an inversion of one byte from the State matrix with this simplified method, we need only
two multiplications, two XOR, and one inversion (TLU). This costs us 2·24cc+2·1 cc+1·2 cc =
52 cc. To invert the 160 bytes for all ten rounds, we need 160 · 52 cc = 8320 cc.

The authors in [TSG02] give us no information about the cycles or memory consumption
in their paper, so we will compare it to the Akkar/Giraud version. Since it saves the half on
multiplications and inversion during one SubBytes transformation, which are the expensive
and time consuming functions, we assume, that this implementation needs half of the cycles,
the Transformed Masking Method from Akkar/Giraud would need.

4.2 Countermeasure: Masking 37

si,j ⊕Mi,j

⊗ Yi,j

(si,j ⊕Mi,j)⊗ Yi,j Mi,j

⊕ Mi,j ⊗ Yi,j ⊗

si,j ⊗ Yi,j Yi,j

Inversion in GF (28)

(si,j ⊗ Yi,j)−1 Mi,j

⊕ Mi,j ⊗ Y −1
i,j ⊗ Inversion in GF (28)

(si,j ⊗ Yi,j)−1 ⊕Mi,j ⊗ Y −1
i,j Yi,j

⊗ Yi,j

s−1
i,j ⊕Mi,j

si,j ⊕Mi,j

⊗ Mi,j

si,j ⊗Mi,j ⊕M2
i,j

⊕ M2
i,j

si,j ⊗Mi,j

Inversion in GF (28)

s−1
i,j ⊗M−1

i,j

⊕ 1

s−1
i,j ⊗M−1

i,j ⊕ 1

⊗ Mi,j

s−1
i,j ⊕Mi,j

Figure 4.3: Multiplicative (left), Source: [AG01], and Simplified Multiplicative (right), Source:
[TSG02](right), Masked inversion in SubBytes

Embedded Multiplicative Masking

Both, the normal and the simplified transformed masking method mask only non-zero values.
If a key byte equals a data byte, then the result of AddRoundKey is zero. This fact can be
exploited in a special (first-order) differential side-channel attack, the zero-value attack. In
[OMP04] it is shown, that around 64 times more measurements are needed in a zero-value
attack than in a standard differential side-channel attack. This indicates that they must be
avoided because they still pose a serious practical threat.

The idea from [GT03] is to embed the finite field GF (28) ' GF (2)[X]/P (x), P (X) =
(x8 +x4 +x3 +x+1)2 into the larger ring R = GF (2)[x]/(P (x) ·Q(x)). Q(x) has degree k and
needs to be irreducible over GF (2) and coprime to P (x). We define ρ : GF (2)[x]/P (x) → R:

ρ(U) = U +R× P (4.1)

The mask R(x) is a random polynomial 6= 0 of degree smaller than k. We define a mapping
F on R, F : R→ R with F (U) = U254 which coincides with the inversion on GF (2)[X]/P (x)3 .
Reducing F (U) modulo P (X) gives the inverse of U in GF (2)[X]/P (x). The additive masking
can be restored before performing this final reduction step. If the polynomial R is random, the
masking will not allow to reveal information even ifX = 0. This zero value gets mapped to one
of 2k random values. This is a mathematically elegant way to bypass the zero value problem

2 P corresponds in our notation to the irreducible polynomial m. However, we stick to the notations of the
paper [GT03] in this paragraph.

3 Fermat’s Little Theorem

38 Chapter 4. Side-Channel Resistant AES Implementation

but it leads to very costly implementations. According to [BGK04], this leads in at least 731
AND and 766 XOR operations, including the transformations to the new field representation
and back. For our cycle count this means that we need at least 731 cc + 766 cc = 1497 cc for
one byte of the State matrix and 160 · 1497 cc = 239520 cc for all ten rounds.

4.2.3 Perfectly Masking AES Inverter Against First-Order Side-Channel Attacks

Another way to protect the SubBytes function is presented in [BGK04]. The authors obtain
a perfectly masked algorithm for AES by computing the multiplicative inverse in GF(28):

s−1
i,j = INV(si,j) =

{

s−1
i,j , if si,j ∈ GF(28)

0, if si,j = 0
(4.2)

and masking all intermediate values.
They calculate the inverse s−1

i,j = INV(si,j), as y = s254
i,j by using the Square-and-Multiply

algorithm. We discussed the algorithm and the resulting side-channel leakage in Section 3.1.
The goal is to protect the value si,j, the intermediate values, and the resulting inverse during
the calculation.

Let r, r′ be independently and uniformly distributed random masks and u = si,j. Now, the
authors start with an additively masked value x = u+r and want to calculate y = INV(u)+r′.

Let us recall the Square-and-Multiply algorithm with the exponent e = 254 and the given
values:

Algorithm 4: Left-to-Right binary Square-and-Multiply Algorithm

Input: x = (u+ r), n = 255, e = {ep, . . . , e0}2 = {11111110}2
Output: y = xe mod n = x−1 mod n
y = 11

for k = p down to 0 do2

y = y2 mod n3

if ek = 1 then4

y = y · x mod n5

end6

end7

As we can see, the algorithm consists of two operations, a squaring in Step 3 followed by a
conditional multiplication with a reduction of n in Step 5. These are the operations, which
were modified by the authors of [BGK04] to ensure the side-channel resistance.

In the following two algorithms, the input si,j becomes the additively masked input u+rl,k,
where r is the lth mask byte in Step k of Algorithm 4. Our goal is, to invert u. The auxiliary
values f, v, w and t are needed in the algorithm.

Algorithm 5 describes the perfectly masked squaring (PMS) method. During the first step,
the input ue + r1,k−1 is squared. In Step two and three, they change the old mask r1,k−1 to
the new mask r1,k. The desired output is a squared input with a fresh mask u2e + r1,k.

In Algorithm 6, we see the perfectly masked multiplication (PMM) method. This algorithm
gets two input values: The output of the previous step and a freshly masked value x′. In
Step 1, the authors calculate the product of the two masked values. In Steps 2-5 the auxiliary

4.2 Countermeasure: Masking 39

Algorithm 5: Perfectly Masked Squaring (PMS), Source: [BGK04]

Input: x = ue + r1,k−1, r1,k
Output: tk = u2e + r1,k
fk = x2 ; {f1 = u2e + r21,k−1}1

w1,k = r21,k−1 + r1,k ; {auxiliary term to correct fk}2

tk = fk +w1,k ; {tk = u2e + r1,k}3

terms are calculated. The last part of the algorithm, Step 6 and 7 removes the disturbing
parts of the masked product by simply adding up the two auxiliary terms w1,k, w2,k and fk.

Algorithm 6: Perfectly Masked Multiplication (PMM), Source [BGK04]

Input: x = ue + r1,k−1, x
′ = u+ r2,k, r1,k−1, r1,k, r2,k

Output: tk = ue+1 + r1,k
fk = x · x′ ; {fk = ue+1 + ue · r2,k + u · r1,k−1 + r1,k−1 · r2,k}1

v1,k = x′ · r1,k−1 ; {v1,ku · r1,k−1 + r1,k−1 · r2,k}2

v2,k = v1,k + r1,k ; {v2,k = u · r1,k−1 + r1,k−1 · r2,k + r1,k}3

w1,k = v2,k + r1,k−1 · r2,k ; {w1,k = u · r1,k−1 + r1,k}4

w2,k = x · r2,k ; {w2,ku
e · r2,k + r1,k−1 · r2,k}5

t1,k = fi + w1,k ; {t1,k = ue+1 + ue · r2,k + r1,k−1 · r2,k + r1,k}6

tk = t1,k + w2,k ; {tk = ue+1 + r1,k}7

To calculate the masked inverse of one element with the secured Square-and-Multiply algo-
rithm, we need seven PMS with additional PMM, both including a modular reduction step,
and at last one PMS with a modular reduction. Every intermediate value of the PMS and
PMM is hidden by a fresh mask. So we need (7 · 3) + 1 = 22 random masks for the inversion
of one element of the State matrix. For a whole AES en-/decryption we need 160 · 22 = 3520
random mask values each with the size of one byte. In the case of a first order side channel
resistance, the authors point out in [BGK04, Section 5.4], that the number of random masks
can be reduced to only three masks (r1, r2, r3), by using the same masks in each step k.

To calculate the clock cycles for the inversion, we recall the clock cycle for: addition
(1 cc), multiplication (24 cc) and squaring (2 cc). By counting the operations during the
algorithm we get: 2 · 2 cc + 2 cc = 6 cc (two squaring and two additions), for one PMS, and
4 · 24 cc + 2 · 1 cc = 98 cc (four multiplications and four additions) for one PMM operation.

So we need:

• (7 · 6) cc = 42 cc for the PMS operation

• (7 · 98) cc = 686 cc for the PMM operation

• 3 cc for loading the random intermediate mask r1,k, r1,k−1, r2,k,

• 1 cc for loading the masked intermediate value from RAM, and

• 1 cc for saving the result.

40 Chapter 4. Side-Channel Resistant AES Implementation

In total we need (42 + 686 + 3 + 1 + 1) cc = 733 cc for the inversion of one element from
the State matrix. For a whole AES en-/decryption we need 160 · 733 cc = 117280 cc for the
inversion part of the SubBytes transformation with three masks.

4.2.4 Combined Masking in Tower Fields

In [OMP04] and [OMPR05], Oswald et al. present a masking scheme, which is based on the
composite field arithmetic we discussed in Section 2.3.8. They call it combined masking in
tower fields (CMTF). The idea is, that the inversion in GF(22) is a linear transformation,
which gives us the potential to track the changes which are applied to the mask value m
during an inversion.

To securely calculate the inversion of the current intermediate byte si,j from the State
matrix, we first mask it additively with the mask m to obtain a = si,j ⊕ m. Next we
transform a to its composite field representation. Please recall, that every element of GF(28)
can be represented as a linear polynomial over GF(24). The finite fields, which we will use
are the same as before (Section 2.3.8):

GF (28) ' GF (2)[x]/(x8 + x4 + x3 + x+ 1), (4.3)

GF (24) ' GF (2)[x]/(x4 + x+ 1). (4.4)

Note that operations ⊕ and ⊗ which we use here, are for coefficients from GF(24). We
have introduced them in Section 2.3.8.

After the mapping, the value that needs to be inverted is represented by (ah⊕mh)x+(al⊕ml)
instead of ahx+ al with ah, al,mh,ml ∈ GF (24). Both values, ah and al, are now additively
masked. It is easier to follow the masked inversion if we recall the normal inversion in the
composite field:

(ahx⊕ al)−1 = a′hx⊕ a′l (4.5a)

a′h = ah ⊗ d−1 (4.5b)

a′l = (ah ⊕ al)⊗ d−1 (4.5c)

d = (a2h ⊗ {E}16)⊕ (ah ⊗ al)⊕ a2l (4.5d)

We can calculate the masked inverse, by following the steps from (4.5a) to (4.5d), but this
time we use the masked values:

((ah ⊕mh)x+ (al ⊕ml))−1 = (a′h ⊕m′h)x+ (a′l ⊕m′l) (4.6a)

a′h ⊕m′h = ah ⊗ d−1 ⊕m′h (4.6b)

a′l ⊕m′l = (ah ⊕ al)⊗ d−1 ⊕m′l (4.6c)

d⊕mh = a2h ⊗ {E}16 ⊕ ah ⊗ al ⊕ a2l ⊕mh (4.6d)

Now we need to securely calculate the inverse for d⊕mh, d ∈ GF (24). So far, we have only
shifted the problem from the bigger field down to the smaller one. Because GF(28) is a tower
field over GF(22), we can shift the computation of the masked inversion for d down to GF(22)
the same way as we did it in (4.6a) to (4.6d) with the corresponding field operations. In this
field, the inversion is a linear operation and we keep track of the mask value. The inversion
operation preserves the masking value, because (d⊕m)−1 = (d⊕m)2 = d2 ⊕m2 in GF (22).

4.2 Countermeasure: Masking 41

This approach has been presented in [OMPR05] to work in tower fields which are applicable
on hardware implementations but inefficient to implement in software on a 32-bit processor,
since during the field transformations we work on every individual bit of all bytes in the State
matrix. Instead, all transformations above can be precomputed and stored in tables. This
method will be discussed in the next subsection.

Combined Masking in Tower Fields with Precomputed Tables

To compute the masked inversion in GF(28), Schramm et al. presented in [OS05] a method
which is based on the inversion in composite fields, as we discussed it in the last section. The
difference is, that the calculations of the intermediate values are mapped to a sequence of
table lookups. Therefore the authors first map the masked intermediate value a = si,j ⊕m
down to its field representation with coefficients from GF(24) as done before.

With the use of the following four tables:

Td1 : ((x⊕m),m) 7→ x2 × {E}16 ⊕m
Td2 : ((x⊕m), (y ⊕m′)) 7→ ((x⊕m)⊕ (y ⊕m′))× (y ⊕m′)
Tm : ((x⊕m), (y ⊕m′)) 7→ (x⊕m)× (y ⊕m′)
Tinv : ((x⊕m),m) 7→ x−1 ⊕m

which can be precalculated and stored in ROM, the masked intermediate values of the formula
(4.6b) to (4.5d) are calculated. Note, that all tables take two elements of GF (24) as inputs
and give an element of GF (24) as output.

d⊕mh = Td1(ah ⊕mh,mh)⊕ Td2((ah ⊕mh), (al ⊕ml))
⊕ Tm((ah ⊕mh),ml)⊕ Tm((al ⊕ml),mh)⊕ Tm((mh ⊕ml),ml). (4.7)

We compute the masked inversion of d with the following table lookup:

d−1 ⊕mh = Tinv(d⊕mh,mh). (4.8)

Now we can compute a′h ⊕m′h and a′l ⊕m′l from (4.6b) and (4.6c) the following way:

a′h ⊕m′h = Tm(ah ⊕mh, d−1 ⊕ml)
⊕mh ⊕ Tm(d−1 ⊕ml,mh)⊕ Tm(ah ⊕mh,ml)⊕ Tm(mh,ml), (4.9)

and

a′l ⊕m′l = Tm((al ⊕ml), (d−1 ⊕mh))
⊕ml ⊕ Tm(d−1 ⊕mh,ml)⊕ Tm(al ⊕ml,mh)⊕ fah ⊕mh ⊕ Tm(mh,ml). (4.10)

To map GF (28) elements to GF (24) × GF (24) elements and vice versa, two additional
tables with a size of 512 bytes are needed.

As the authors state and we can count above, the total costs of a masked inversion this
way are 14 table lookup operations and 15 XOR operations for an inversion, which results in
14 · 2 cc + 15 cc = 43 cc. For an AES encryption this results in 160 · 43 cc = 6880 cc additional
for the new masked SubBytes transformations.

To store the six tables we need 4 · 256 bytes + 2 · 256 bytes = 1536 bytes of ROM.

42 Chapter 4. Side-Channel Resistant AES Implementation

4.2.5 Masking the MixColumns Transformation

The MixColumns transformation can leak timing informations because it uses the xtimes
operation. Xtimes contains a conditional reduction by {11B}16 if the result of the operation
is larger than eight bits, see Section 2.2.

To prevent the timing information leakage and power leakage, the State S has to be ad-
ditively masked with the mask M before the transformation, SM = S ⊕M, where M is a
4× 4 matrix created of four random bytes M1, . . . ,M4, see (4.11). After the transformation
(S′

M
= MixColumns(SM)) the mask M can be removed from the transformed State S′

M
by

adding the transformed mask M′ = MixColumns(M), so S′ = S′
M
⊕M′.

M =

M1 M2 M3 M4

M1 M2 M3 M4

M1 M2 M3 M4

M1 M2 M3 M4

(4.11)

Masking the MixColumns transformation needs one additional MixColumns transformation
(84 cc) to get M’ if the same mask M is used to mask all MixColumns transformations during
an whole AES run. In addition, four random bytes are needed for the mask M, and 16 bytes
are needed for the transformed mask M′ = MixColumns(M).

4.3 Countermeasure: Randomization

Randomizing the execution of the algorithm provides additional resistance against power
analysis attacks. Herbst et al. suggest in [HOM06] two ways to introduce randomness in the
execution of the algorithm. They propose to shuffle the sequence of operations which work
on the elements of the State matrix and to add dummy rounds (or parts of a round) during
the normal ones.

4.3.1 Shuffling

s3,0

s2,0

s1,0

s0,0

s3,1

s2,1

s1,1

s0,1

s3,2

s2,2

s1,2

s0,2

s3,3

s2,3

s1,3

s0,3

s1,1 s2,1 s3,1 s0,2 s1,2 s2,2 s3,2 s0,3 s1,3 s2,3 s3,3 s0,0 s1,0 s2,0 s3,0 s0,1

s1,1

s1,1

Figure 4.4: Shuffled AES-State

Figure 4.4 shows, we first randomly choose a starting column and in that column a random
value. Then we proceed with the next element. As we work on each intermediate value of the
State matrix, this version of shuffling is applicable on 8-bit implementations. With shuffling,
the probability that one specific intermediate value is processed at a specific point in time is
1/16. Theoretically, we can shuffle the whole State matrix with 16! possibilities. But that
would not increase the security against a first-order DPA with the same factor since here it

4.3 Countermeasure: Randomization 43

is important that the operations with the intermediate values do not occur on the same fixed
time.

The randomization can be broken with windowing, published by Clavier et al. [CCD00].
Windowing can be seen as performing multiple second-order DPA attacks in parallel and then
combining the power traces for the mask processing with each of the points in time, where
the targeted masked values can occur. So shuffling all 16! possibilities would not bring us
more security but would increase the implementation costs. For a successful side-channel
attack 16 times more traces are needed with this countermeasure than with an unprotected
implementation.

4.3.2 Execution of Dummy Operations

d d s0,0 s1,0 s2,0 s3,0 s0,1 s1,1 s2,1 s3,1 s0,2 s1,2 s2,2 s3,2 s0,3 s1,3 s2,3 s3,3 d d d

Figure 4.5: AES-State with dummy values

Another way to increase the randomization is to add dummy intermediate values d to the
State matrix which will be operated on. Those operations must not be distinguishable from
real operations of the algorithm. The problem with added wait states or, for example, just
added random NOPs (No Operation) is that they can be easily removed by analyzing a single
power trace. The authors in [HOM06] therefore suggest to insert dummy rounds or parts
of a round on some dummy State bytes, see Figure 4.5. The combination of shuffling and
dummy operations make it very difficult for the attacker to locate the attack point in the
first two and the last two rounds. These are the rounds, which need our attention, because
they are vulnerable during a known/chosen plaintext/ciphertext attack. After these rounds,
every value from the State has been subjected to three AddRoundKey transformations and
depend on sufficient many key bytes, to prevent an DPA attack [HOM06]. The probability,
that a certain intermediate value occurs on a specific point in time is p = 1/(D + 1), where
D is the number of additional dummy cycles. If we chose to insert 15 dummy operations, the
probability is 1/16, which would increase the number of needed traces for a successful SCA
also by 16 times. Note, that we have to see the normal consecutive State bytes as one value
compared to the dummy bytes, to calculate this probability.

With D additional dummy rounds and shuffling, which is recommended by the authors,
the number of required traces for a successful mounted SCA increases by (D + 1) · 16. With,
e. g., D = 5 dummy rounds randomly inserted at the start and the end of the algorithm, 96
times more measurements would be required for a successful DPA attack.

Figure 4.6 denotes the execution on dummy bytes d and shuffled execution of the State
matrix.

. . . d s1,1 s2,1 s3,1 s0,1 s2,2 s3,2 s0,2 s1,2 s0,3 s1,3 s2,3 s3,3 s2,0 s3,0 s0,0 s1,0 d d . . .

Figure 4.6: AES-State with dummy values and shuffled AES-State

The number of added dummy operations D is a fixed value. The random number r, 0 ≤

44 Chapter 4. Side-Channel Resistant AES Implementation

r ≤ D partitions the D dummy operations into two parts. The dummy operations from 0 to
r − 1 will be executed before and the dummy operations from r to D − 1 will be executed
after the normal operations, like it is depicted in Figure 4.5 for r = 2 and D = 5.

Table 4.1 denotes how many random bits are required for the shuffling and the dummy
cycles countermeasure.

Algorithm No. random bits Usage

shuffling 4 defines the entry point in State matrix
dummy operations dlog2(D)e number of dummy operations before/after

actual operation

Table 4.1: Number of random values required for secured implementation

4.4 Comparison

In this chapter we gave a short overview about the discussed (low-cost) software counter-
measures against timing and power attacks. Now we estimate the number of clock cycles
for a protected AES implementation with the selected countermeasure based on our 32-bit
optimized implementation with a clock cycle count of 1732 cc. The clocks cycles for the
affine transformation (Section 2.3.3) with 6560 cc are added to those schemes, which have to
calculate it. We get the following runtimes estimated for the countermeasures:

• Additive Masking: 1732 cc + 1600 cc = 3332 cc,

• Transformed Masking: 1732 cc + 6560 cc + 16320 cc = 24612 cc,

• Transformed Masking simpl.: 1732 cc + 6560 cc + 8320 cc = 16612 cc,

• Embedded Masking: 1732 cc + 6560 cc + 239520 cc = 247812 cc,

• Perfect Masking: 1732 cc + 6560 cc + 117280 cc = 125572 cc,

• CMTF with TL: 1732 cc + 6560 cc + 6880 cc = 15172 cc.

Table 4.2 contains the estimated memory consumption (ROM and RAM), the number of
random bits, and the runtime in clock cycles (cc) for the discussed masking methods. Note
that we are only interested in a rough estimate to select the most appropriate countermeasure.
The value on the left side denotes the estimated result for using one random byte to mask all
16 elements of the State matrix. The value on the right side is the estimated value using four
random bytes to mask a whole column of the State matrix. All RAM estimates include the
176-byte expanded key array for the key scheduling.

With 3332 cc and 434 bytes RAM, Additive Masking is applicable when used with one mask.
With four different masks the RAM consumption of 1208 bytes, which is mainly caused by
the four masked S-boxes, is too big for our needs. The runtime 5440 cc + 1732 cc = 7172 cc is
still acceptable.

In a 32-bit T-tables implementation, which is Additively Masked with one mask pair, the
RAM consumption of 8376 bytes and 32976 bytes for four masks is also too big.

4.4 Comparison 45

The Transformed Masking and simplified Transformed Masking Method both multiplica-
tively mask an element of the State matrix during the SubBytes transformation. The simpli-
fied Transformed Masking Method is the improved one of the Transformed Masking Method,
in terms of needed operation and random bytes for masking. It is very interesting regarded
to the RAM consumption of 180 bytes. Compared to the Additive Masking implementation,
the runtime of 16612 cc is also acceptable. A big pro of the Transformed Masking approach
is the constant runtime, which is independent from the number of mask values.

The Perfect Masking in line six needs 179 bytes RAM (three for the masks and 176 for the
expanded key). Since it calculates the inversion transformation and the affine transformation
on the fly, it has a very big runtime, which is the main criteria against it.

No. Masking Method ROM RAM Encryption No. of
(bytes) (bytes) (clock cycles) random bits

1 unmasked 256 176 / 176 1732 / 1732 0 / 0
2 Additive Masking 256 434 / 1208 3332 / 7172 16 / 64
3 Transformed Masking 0 178 / 204 24612 / 24612 16 / 64
4 Transformed Masking simpl. 0 177 / 180 16612 / 16612 8 / 32
5 Embedded Masking 0 177 / 180 247812 / 247812 8 / 32
6 Perfect Masking 0 179 / 179 125572 / 125572 3 / 12
7 CMTF with TL 1536 177 / 180 15172 / 15172 8 / 32

8 T-tables, unmasked 8192 176 / 176 520 / 520 64 / 64
9 Additive Masking (T-tables) 8192 8376 / 32976 1800 / 5640 256 / 256

Table 4.2: Estimated memory consumption and cycle count for different AES implementations with
masking countermeasure, one mask / four masks

The same constant runtime characteristic holds for the Combined Masking in Tower Fields
in row seven. The big ROM consumption of 1536 bytes mainly results from a couple of
constant tables, which are used for the transformation between the different representation
systems and for calculating the masked inversion, see Section 4.2.4.

The big part of the runtime from the Additive Masking Method arises from the creation of
the masked S-boxes. If these masked S-boxes have been created, the implementation is even
as fast as the unmasked implementation since then, the transformation is only a table lookup.
Transformed Masking and the improved versions of it would only pay off if a high number of
random masks is used. But using a high number of masks does not lead to a practically safer
implementation. This is because a higher order DPA works whenever the same mask values
occur on two different points in time. Since all masks have to be created at a specific point
in time and are used to mask an intermediate value at some point later, there are always two
points in time that allow a higher order DPA attack.

We decided to use the Additive Masking Method and combine it with randomization (shuf-
fling and dummy states). By using the masking approach, we fulfill the requirements needed
against a first-order DPA. In addition, we will mask the MixColumns transformation to pre-
vent timing analysis attacks and use masking and shuffling to increase the resistance to a
second-order DPA.

46 Chapter 4. Side-Channel Resistant AES Implementation

4.5 Low-Cost SCA-Resistant AES Software Implementation

On the Applied Cryptography and Network Security Conference (ACNS’07), Tillich, Herbst
and Mangard [THM07] presented a low-cost SCA-resistant AES implementation, which takes
advantage of the masking, shuffling and execution of dummy cycle approach. In Figure 4.7,
the program flow of the randomized and masked AES is depicted. The randomization ar-
eas are called Randomization Zone 1 and Randomization Zone 2. In these two zones the
shuffling and the dummy operation approach is applied. Because the randomization is very
costly, the authors keep the Randomization Zones as short as possible. During the Random-
ization Zones, the following operations are randomized: The AddRoundKey operation, since
the 16 bytes of the State matrix S are processed independently. The same holds for the
(masked) SubBytes transformation. During the MixColumns transformation, the sequence of
the processed columns is randomized.

Figure 4.7: Program flow of a randomized AES implementation where all transformations are masked
in the first and last two rounds. The current masks (M , M ′, M1,. . . ,M4 and M ′

1
,. . . ,M ′

4
)

are depicted right of the State. Adapted from: [THM07].

The first two and the last two rounds of the AES implementation are additionally protected
by masking. The current mask of the State S is shown on the right in Figure 4.7. The SubBytes
transformation is masked additively with the mask byte M , see Section 4.2.1.

To protect the MixColumns transformation, the authors use four mask bytes, M1 to M4,
see Section 4.2.5. Every mask byte M1 to M4 is used to mask the corresponding column

4.5 Low-Cost SCA-Resistant AES Software Implementation 47

of the State S. To remove the four masks after the MixColumns transformation, the four
mask bytes are also transformed, (M ′1,M

′

2,M
′

3,M
′

4) = MixColumns(M1,M2,M3,M4). To re-
mask the State, the AddRoundKey transformation is used whenever possible. The ShiftRows
transformation is excluded from the Randomization Zones because it works on the whole
State matrix.

We will adapt this scheme. The Additive Masking implementation with one masked S-
box needs needs 3332 cc. To calculate the four masks M ′1,M

′

2,M
′

3 and M ′4 we need one
additional MixColumns transformation (84 cc). We implement one dummy operation to op-
erate on one column of the State matrix. This is the smallest part on which all transfor-
mations can work and it fits to our 32-bit architecture. During one dummy operation the
following transformations are executed AddRoundKeyColumn, SubBytesColumn, MixColumn,

AddRoundKeyColumn and SubBytesColumn. This takes 4 cc + 20 cc + 21 cc + 4 cc + 20 cc
= 69 cc. For shuffling, we only change the indices of the current column and current row.
We think this runtime is negligible. So the protected implementation has a runtime of
3332 cc + 84 cc = 3416 cc with no dummy operations and 3416 +D · 69 cc with D dummy
operations.

The Additive Masking scheme needs 256 bytes RAM for the masked S-box and 16 bytes for
the four wordsM1′ toM4′. In addition six random bytes for the masked valuesM,M ′,M1 to
M4 one random byte r to divide the number of dummy operations during the randomization
zones, 16 random bytes for one dummy State and five random bytes for shuffling the five Ad-
dRoundKey, four SubBytes and three MixColumns transformations in the two randomization
zones. That makes in total (176 + 256 + 16 + 6 + 1 + 16 + 5) bytes = 476 bytes RAM.

Implementation Encryption
(clock cycles)

Unmasked 4427
Masked 8420
Masked and Randomized 11845+D · 240

Table 4.3: Comparison of an unmasked AES implementations with a masked and a masked and ran-
domized AES implementation with D dummy operations on an 8-bit smart card processors
(AVR), Source: [HOM06].

In Table 4.3 the execution time between an unmasked and their randomized AES imple-
mentation is compared by the authors of [HOM06]. The masked AES implementation is
roughly two times slower than their referenced unmasked AES implementation. The random-
ized implementation takes about 11845 clock cycles when no dummy operations are added.
This is about 2.7 times slower than the unprotected AVR-based AES implementation. With
D dummy operations added, their randomized AES implementation needs 11845 + D · 240
clock cycles. Our estimated protected AES encryption increases by a factor of two.

Chapter 5

Target Platform: TriCore TC1796

To write an optimized AES implementation, it is important to understand the underlying mi-
crocontroller architecture. We will discuss the most important parts of the microcontroller in
the following subsections and only mention those features of the TriCore, which are interesting
for our work.

The TriCore TC1796 or variants thereof is a typical automotive embedded processor which
is used, for example, in the current engine control units (ECU) MEDC17 by Robert Bosch
GmbH. The TriCore TC1796 combines a reduced instruction set computing (RISC) processor,
a digital signal processor (DSP), and on-chip memories as well as peripherals. It has a
program flash memory of 2 Mbyte, a data flash of 128 Kbyte, and 136 Kbyte data memory
and a 16 Kbyte instruction cache (ICACHE). The TriCore TC1796 has no data cache [Inf07,
page 2-36].

The program flash and the data flash are connected through the SBD (System Bus Domain)
to the CPU. Because the data is accessed through a bridge, it can be one order of magnitude
slower than the local domain which is located nearest to the core [Inf02, page 30]. This means
for our processor model, that the runtime can also differ by an order of magnitude because
our program code and program data is located at the flash.

The chip provides a lot more interesting features, which are explained in the data sheet
of the chip [Inf08a]. But first let us start with an overview of the development environment
used.

5.1 Development Environment

For programming and compilation of our code, we use the Tasking VX tool set version 3.0r1.
It offers a C compiler, linker, Assembler, and a simulator for the TriCore. The C compiler
supports the ISO C99 standard.

At the Robert Bosch GmbH, the Hightech GNU C development environment is widely used
and also used for developing TriCore applications. We write our code in such a way, that it
compiles on both development environments.

We use the Universal Debug Engine (UDE) UAD2 to communicate with the evaluation
board. The debugger is connected via USB to our PC. To flash our application to the
development board and to debug it in real time, we use UDE-Desktop application. The
development board is a TriCore Evaboard TriBoard TC1796.

49

50 Chapter 5. Target Platform: TriCore TC1796

5.1.1 Compiler

We write our implementation in C following the C99 standard to keep it as portable as possible.
If some optimizations are only possible in assembler, we will write a TriCore optimized version
and a generic version, separated by defines in the source.

Assembly instructions can be inserted with the keyword __asm in C source code. The
C variables are passed as operand to the assembly code. The general syntax of the __asm

keyword is:

__asm("instruction_template"

[: output_param_list

[: input_param_list

[: register_save_list]]]);

The instruction_template is the assembly instruction, that may contain parameter from
the input_param_list or output_param_list. The register_save_list contains the name
of registers which should not be used.

The following example multiplies two C variables and assigns the result to a third C variable.
The =d denotes that a data register is necessary for output, and the d denotes that the values
come from a data register.

1 int in1 , in2 , out ;
2

3 void i n i t r e g (void)
4 {
5 __asm(" mul %0, %1, %2"
6 : "=d" (out)
7 : "d " (in1) , "d " (in2)) ;
8 }

The following sections list the built in functions with their respective prototypes and asso-
ciated machine instructions. In case an assembler mnemonic is given, the builtin’s semantic is
the same (from the C programmer’s point of view) as the semantic of the machine instruction.
We do not repeat the instruction set manual here.

Please note, that the syntax of the Hightech GNU C compiler differs for the inline assembler.
However, the compiler has built in functions for the assembler instructions which can be used
instead.

To ensure the formal correctness of our code, we use splint (Secure Programming Lint).
Splint is a tool for statically checking C programs for security vulnerabilities and coding mis-
takes.1

Because our implementation will be used in the automotive environment it should also
be Motor Industry Software Reliability Association2 (MISRA) conform. MISRA is a set of
programming rules for secure programming in C.

For code formating we use indent –no-tabs. We will deliver our AES implementation as
source code, which can be compiled as a library.

1 http://splint.org/
2 http://www.misra.org.uk/

5.2 TriCore CPU 51

5.1.2 Simulator

During the development process, we use the TriCore Instruction Set Simulator (TSIM) to
simulate and debug our implementation. It is described in [Inf05] and perfectly integrated
in our development IDE. The simulator has the disadvantage, that it does not simulate the
pipelining right. Therefore, we will make the time measurements on the evaluation board.

5.1.3 Evaluation Board

We have the TriBoard – TC1796 V4.1 which hosts the TriCore TC1796. This board is
connected via a JTAG (Joint Test Action Group) interface to the UAD. The Debugger is
connected via USB to our development PC.

We can debug the TriCore with the Universal Debug Engine (UDE). The UDE has a virtual
console, where we can receive messages from our application on the TriBoard. To receive the
messages during a run on the evaluation board, we have to set the define CONSOLE_TYPE in
BCLtypes.h to CONSOLE_TYPE_TASKING. This causes the compiler to overwrite the standard
POSIX read and write functions, which are called by the ANSI-C Library. The stdin, stdout

and stderr are now piped through a JTAG interface and we see the output in the UDE-
Desktop application.

5.1.4 The Multi-Core Debug System

In addition, we got the TriBoard – TC1796.303, which hosts the TC1796ED. With this
board, we can do exact timing measurements without external influences. Figure 5.1 depicts
the TriBoard and how the UAD is connected via the JTAG interface.

The TC1796ED provides a Multi-Core Debug System (MCDS) that can be used to trace
the program, which is executed on the TC1796, in real-time. Its MCDS is integrated as
a plug-in into the UDE-Desktop application. Figure 5.2 depicts the MCDS configuration
dialog. The dialog contains 5 tasks which are needed to measure the runtime of the function
aes_Encrypt. The first task configures the emulation device, there the timer resolution is set
to 250 ns.

The next two tasks create one signal each. The first signal (sig_start) fires if the TriCore
program counter (PC) reaches the start address of the function aes_Encrypt. The second
signal (sig_stop) fires when the end of aes_Encrypt is reached. The following two tasks
define the actions on the signals. The first action starts a timer, the second one stops the
timer and stores its value for every execution of the function aes_Encrypt.

5.2 TriCore CPU

The TC1796 processor contains a TriCore 1 V1.3 central processing unit (CPU), with a
maximum CPU frequency of fCPU=150 MHz. The most interesting features of the CPU for
us are the:

• 32-bit load/store architecture,

• 16-bit and 32-bit instructions for reduced code size,

• data formats: bit, byte (8-bit), half-word (16-bit), word (32-bit), double-word (64-bit),

52 Chapter 5. Target Platform: TriCore TC1796

Figure 5.1: TriBoard – TC1796.303 on the left and AD2 on the right

• byte and bit addressing,

• little endian byte ordering,

• packed data.

This enumeration is taken from the user manual [Inf07, Section 2]. The CPU contains an
instruction fetch unit, an execution unit, and a general purpose register file (GPR), namely
the address and data registers.

The instruction fetch unit pre-fetches and aligns the incoming instructions. The execution
unit of the TriCore contains three pipelines which work in parallel. This allows us to execute
up to three instructions in one clock cycle. The execution unit contains the integer pipeline
(IP), the load/store pipeline (LS), and the loop pipeline.

The integer pipeline and the load/store pipeline have the following four stages: fetch,
decode, execute, and write-back. The loop pipeline has the two stages: decode and write-
back. The execution unit can execute most operations we use in one clock cycle. Figure 5.3
illustrates the three pipelines of the execution unit.

The instruction fetch unit feeds the three pipelines. The fetch unit is able of issuing, in one
cycle, an integer pipeline instruction to the integer pipeline and an immediately following LS
instruction to the LS pipeline.

Our two main goals during our TriCore optimization strategy are to avoid pipeline stalls as
much as possible and to take advantage of the parallel issue capabilities as mentioned above.

The CPU has 16 data registers (register D0 to D15) and 16 address registers (register A0
to A15). Each address and data register has a size of 32-bit. Respectively two 32-bit data

5.2 TriCore CPU 53

Figure 5.2: MCDS config dialog

Figure 5.3: The three parallel pipelines of the execution unit

54 Chapter 5. Target Platform: TriCore TC1796

registers can be combined to one 64-bit register E.

5.3 TriCore Instruction Set

The TriCore supports 16 and 32-bit instructions. Since there is no mode bit and no require-
ment for word alignment of the 32-bit instructions we can freely mix the instructions. To
specify a 16-bit command, the basic operation name is followed by a 16, e. g., SH16. The
advantage of a 16-bit instruction is, that it is smaller than a 32-bit instruction in the program
memory. It should be used whenever possible for smaller code size.

To follow the upcoming assembler examples, we first show how an assembler instruction is
composed. The assembler instruction starts with the basic operation, which is derived from
the intention of the instruction. For example, a shift instruction starts with SH. The basic
operation can be followed by an operation modifier, e. g., the instruction JNE would execute
a conditional jump. The condition here is given by the NE, which stands for “not equal”. In
Table 5.1 we list all operation modifiers used by us.

Operation Modifier Name Description Example

C Carry Use and update carry bit ADDC
S Saturation Saturate result ADDS
EQ Equal Comparison equal JEQ
GE Greater than Comparison greater than or equal JGE
A Absolute Absolute (jump) JLA
I Immediate Large immediate ADDI
LT Less than Comparison less than JLI
NE Not equal Comparison not equal JNE
D Decrement Decrement counter JNED
I Increment Increment counter JNEI
Z Zero Use zero immediate JNZ

Table 5.1: Operation Modifiers

The data type modifier specifies the data type we want to work with. For example, if we
load a byte from memory, we use the LD.B instruction. The .B denotes, that we load a byte
value. In Table 5.2 we list the modifier for the individual data types:

The data type modifiers can be combined to a new one, e. g., the instruction LD.BU loads
an unsigned byte. In the following subsections, we will describe the commonly used assembler
instructions.

5.3.1 Load and Store Instructions

To load and store a value into data register D[A] we can use the load word and store word
instructions (LD.W and ST.W).

LD.W D[a], offset ; Load Word (Absolute

; Addressing)

5.3 TriCore Instruction Set 55

Data Type Modifier Name Example

.D Double-word LD.D

.W Word EQ.W

.A Address ADD.A

.H Half-Word ADD.H

.B Byte ADD.B

.T Bit AND.T

.U Unsigned ADDS.U

Table 5.2: Data Type Modifiers

LD.W D[a], A[b], offset ; Load Word (Base + Short

; Offset Addressing)

ST.W off, D[a] ; Store Word

5.3.2 Arithmetic Instructions

The following three bit arithmetic instruction work almost the same way. So we describe
it only once. The OR,XOR and AND instruction computes the bitwise OR, XOR, respectively
AND operation of the data register D[a] and the data register D[b]. The result is stored in
the data register D[c].

OR D[c], D[a], D[b] ; c = a OR b

XOR D[c], D[a], D[b] ; c = a XOR b

AND D[c], D[a], D[b] ; c = a AND b

The multiplication instruction multiplies two signed 32-bit values from the data register
D[a] and the data register D[b] and puts the product into the 32-bit data register D[c] or
the 64-bit data register E[c].

MUL D[c], D[a], D[b] ; c = (lower half of)

; a * b

MUL E[c], D[a], D[b] ; c = a * b

With the shift instruction SH we can shift the value in D[a] by the number of bytes specified
with either a constant value const or the value in data register D[b]. The result is put in
D[c]. The vacated bits are filled with zeros and the bits shifted out are discarded.

SH D[c], D[a], D[b] ; shift D[a] by D[b] positions

; and store the result in D[c]

SH D[c], D[a], const ; shift D[a] by #const positions

; and store the result in D[c]

56 Chapter 5. Target Platform: TriCore TC1796

5.3.3 Extract Instruction

It is possible to work with so called bit-fields. We can extract the number of consecutive
bits specified by width starting at the bit pos from a source register D[a] with the EXTR

(Extract Bit Field) and EXTR.U (Extract Bit Field Unsigned) instructions, beginning with
the bit number specified by the pos operand. The result is stored sign extended (EXTR) or
filled with zeros (EXTR.U) in the destination register D[c]. Figure 5.4 denotes the EXTR.U

operation.

EXTR D[c], D[a], pos, width ; Extract Bit Field

EXTR.U D[c], D[a], pos, width ; Extract Bit Field Unsigned

To extract a 32-bit word from the registers {D[a] and D[b]}, where D[a] contains the
most-significant 32 bits of the value, we use the DEXTR instruction. The extraction starts at
the bit number specified with 32-pos. The result is put in D[C].

DEXTR D[c], D[a], D[b], pos ; Extract from Double Register

Figure 5.4: Operation of the EXTR.U instruction, source:[Inf07]

Packed Arithmetic

The packed arithmetic instruction partitions a 32-bit word into four byte values or into two,
16-bit halfwords values. Those can be fetched, stored, and operated on in parallel. The
packed byte format is denoted in Figure 5.5. Instructions which operate on the data in this
way are denoted by the .B and .BU data type modifier. The arithmetic on packed data
includes addition, subtraction, multiplication, shift and the absolute difference.

Figure 5.5: Packed Byte Data Format, source:[Inf07]

To load the contents of the memory location specified by the offset we can use the load
byte instruction (LD.B).

5.4 Time Measurement 57

LD.B D[a], offset ; Load Byte (Absolute

; Addressing)

LD.B D[a], A[b], offset ; Load Byte (Base + Short

; Offset Addressing)

The ST.B instruction stores the byte value in the eight least-significant bits of the data
register D[a] to the byte memory location specified by the offset off.

ST.B off, D[a] ; Store Byte

5.3.4 Address Arithmetic

The ADDSC.A operation left-shifts the contents of data register D[a] by the amount specified
by n, where n = 0,. . . ,3. That value is added to the contents of address register A[b] and the
result is put into address register A[c].

ADDSC.A A[c], A[a], D[a], n ; Add Scaled Index to

; Address

The LEA instruction computes the effective address and puts the result in address register
A[a].

LEA A[a], offset ; Absolute Addressing

; Mode

LEA A[a], A[b], offset ; Base + Short Offset

; Addressing Mode

5.4 Time Measurement

The TriCore has a system timer (STM), which we can utilize for our time measurement, see
the user’s manual [Inf07, Section 15]. The STM is a free running 56-bit upward counter and
driven by max. 75 MHz (=fSYS). The maximum clock period is 256 ·fSTM . For fSTM=75 MHz,
for example, the STM counts 30.46 years before it overflows. The minimum resolution of the
STM is 13.3 ns. The default frequency after a reset is fSTM = fSYS/2.

We can read the counter value from the STM timer register, which has the address
{F0000210}16. Due to the fact, that the STM is 56-bit wide, we cannot read its entire
content with one instruction. We have to use two load instructions. Listing 5.1 denotes, how
we can load the STM register values with inline assembler.

The STM value can also be loaded in sections from seven registers, STM_TIM0 through
STM_TIM6. Theses register can be viewed as individual 32-bit timers, each with a different
resolution and timing range [Inf07, Section 15].

1 i n l i n e tcc lock_t t c c l o ck (void) {
2 u int64 tmp ;
3

58 Chapter 5. Target Platform: TriCore TC1796

4 /∗ Load 56− b i t system timer va lue ∗/
5 __asm(
6 "LD.W %0.0 , 0 xf0000210 "
7 "LD.W %0.1 , 0 xf000022c "
8 : "=e " (tmp)
9) ;

10

11 return tmp ;
12 }

Listing 5.1: The function tcclock returns the current system timer STM value. Source: Timing mea-
surement routines from Robert Szerwinski.

The "=e" (tmp) in line 8 denotes, that the variable tmp is used for the result of the LD.W

instruction and is an extended 64-bit data register.

Chapter 6

Optimized and Randomized AES
Implementations on TriCore

6.1 Implementation Constraints

The AES implementation runs on an automotive processor and it will not be the only task
running there, so it will be implemented as space saving as possible in terms of RAM and
ROM consumption1.

The ROM consumption is measured for a whole minimal AES implementation. We get the
ROM consumption from the Assembler list file. To generate the list file, we have to enable
the “Generate list file” option in the project settings dialog “Assembler -> List file” from the
Tasking toolchain. The generated list file contains a “List section summary” with the ROM
consumption.

6.1.1 Validation Tests

The National Institute of Standards and Technology (NIST) requires that all AES implemen-
tations have to pass some algorithm validation tests. This tests help to find failures early
during the development process. It can happen, e. g., that we calculate a wrong byte in a
S-box which is not used during an encryption but during a later one. This can happen be-
cause the used S-box bytes depend on the used plaintext and key combinations. To verify
the correctness of the implementation, the following four tests are used:

• Variable key known answer test,

• Variable text (plaintext/ciphertext) known answer test, and

• tables known answer test,

• Monte Carlo test.

Variable Key Known Answer Test

During the Key Known Answer Test (Key KAT) [NIS98], the 128-bit plaintext is always
initialized to zero. The key used in an AES iteration i, 0 ≤ i < 127 consists of a one in the
ith position and zeros in all other positions. Each of the possible keys is created by shifting
the one a single position at a time, starting at the most significant (left most) bit of the key.

1 The requirements are very different depending on the application. But, in general, speed is not the most
critical requirement, whereas memory and program space footprint are almost always an issue.

59

60 Chapter 6. Optimized and Randomized AES Implementations on TriCore

Variable Text (Plaintext/Ciphertext) Known Answer Test

In this test, the 128-bit key is initialized to zero. Each 128-bit block data input consists
of a one at the ith position, starting at the most significant (left most) bit position, where
i = 0, . . . , 127 is the AES iteration.

Table Known Answer Test

This test contain sets of key and plaintext combinations which have been carefully selected
to test the tables used for the AES implementation, e. g., the S-boxes.

Monte Carlo Test

This test is used to identify implementation flaws. Therefore the authors of AES supply
pseudo random values for the key and plaintext. The test consists of 4 million AES encryp-
tion/decryption cycles. Thereby the results of every 10, 000th encryption or decryption cycle
are recorded and evaluated with the supplied results from the authors. The first key k0 and
plaintext p0 are given. The following keys and plaintexts are taken from the encryption like
it is depicted in Algorithm 7.

Algorithm 7: Monte Carlo Test – ECB Encryption

Input: k0, p0
for i = 0 to 399 do1

for j = 0 to 9999 do2

cj =aes_Encrypt(ki, pj)3

pj+1 = cj4

end5

ki+1 = ki ⊕ cj6

end7

6.2 Available AES Implementations

We begin our work by reviewing the already existing AES implementations from Brijesh Singh
[Sin08] and Robert Szerwinski, done at Robert Bosch GmbH, Corporate Research2.

The implementations are 8-bit implementations and work on the 16-byte State matrix,
as it is described in the AES overview, Section 2.1. The State matrix is filled sequentially
with memcpy() which is a few cycles faster than copying the plaintext byte-by-byte within
a for() loop. Both authors combine the SubBytes and the ShiftRows transformation. This
new transformation realizes the SubBytes transformation as a table lookup and integrates
the ShiftRows transformation by using the indices for the table lookups, as they were af-
ter a ShiftRows transformation. This trick safes the rotation operations of the ShiftRows
transformation, as described in Section 2.3.4.

Now we come to the differences of the available implementations. Brijesh Singh uses sepa-
rate key scheduling in his implementation. He realized the xtimes operation as a table lookup.

2 Note that all versions are in a very early release state and are not production ready!

6.3 General Optimizations Hints 61

This idea comes from Tom St Denis [Den07]. For this lookup table he needs 256 bytes ad-
ditional ROM. In the following we refer to this implementation as Singh-1. The second
implementation of Brijesh Singh also uses a separate key scheduling but computes the xtimes
operation as it is described in Section 2.3. We refer to this second implementation as Singh-2.

Robert Szerwinski realized the AES implementation without the lookup table for the xtimes
operation. He implements this function as it was suggested in the standard and is described
in the mathematical background, Section 2.2. Contrary to the standard, he calculates the
keys on-the-fly. We refer to his implementation as Szerwinski.

6.3 General Optimizations Hints

Both presented implementations neither uses the 32-bit register size nor any special instruc-
tion of the TriCore. But they are a good start for our further optimization.

Since we program our implementation in C, we have to pay attention to the general C

compiler specific behavior. For example we pass constant variables to functions as const

values, which avoid the compiler from creating a local copy of the variable in the called
function. Brijesh Singh also notes that using the __near pragma3 before a variable declaration
causes the linker to put the variable into direct addressable memory, which makes the access
to the variable faster. Another known fact is, that calling functions is very expensive. We
avoid functions if they are used often, for example in loops. Alternatively for those functions
we create a macro or an inline function of it. The compiler then replaces the macro resp.
inline function call by the actual code of the function.

6.4 AES Optimizations for the TriCore

In the following sections we will walk through the four AES transformations AddRoundKey,
SubBytes, ShiftRows and MixColumns and take a look, if they can be optimized for the
TriCore. In addition, we will use the 32-bit capability of the TriCore and implement the
transformations as discussed in Section 2.3.5.

6.4.1 AddRoundKey

The AddRoundKey transformation is implemented as macro to avoid the overhead of a func-
tion call. Because we arrange the State matrix and the expanded key arranged column wise
on RAM, we can load one word w from the State matrix and one word from the expanded
key in two clock cycles.

Listing 6.1 denotes how a column of the expanded round key expkey is added to one column
w of the State matrix. The address for the used key is calculated from the current round and
the current column index of the State matrix.

1 #define AddRoundKeyColumn(w, expkey , round , column) \
2 w = w ^ expkey [(4U ∗ round) + column] ;

Listing 6.1: AddRoundKey transformation for one column of the State matrix

3 In computer science or software engineering, a pragma is a compiler directive communicating additional
“pragmatic” or implementation-specific information (Wikipedia).

62 Chapter 6. Optimized and Randomized AES Implementations on TriCore

The compiler creates the following Assembler instructions for the 32-bit addition of one
column from the State matrix:

LD16.W D0, [A10] ; load word from the

; State matrix

LD16.W D15, [A15]16 ; load key word from expanded

; key

XOR D0, D15 ; add them

ST16.W [A10], D0 ; write the word back to RAM

The LD.W (load word) instruction, loads 32 subsequent bits from the State matrix, which
is located in RAM, into the data register D[0]. The next instruction loads 32-bits from the
expanded key to D[15]. Both values are bitwise added with the XOR instruction which the
result in D[0]. The ST.W (store word) instruction stores the register value at the given address
in A[10] (the position of the State matrix in RAM).

By processing four bytes at the same time, we save approximately the factor four for
the key addition, i. e., the AddRoundKey takes 176 cc instead of 704 cc. An AddRoundKey
transformation on the whole State matrix is denoted in Listing 6.2:

1 #define AddRoundKey(state , expkey , round)\
2 AddRoundKeyColumn (s t a t e [0] , expkey , round , 0) ; \
3 AddRoundKeyColumn (s t a t e [1] , expkey , round , 1) ; \
4 AddRoundKeyColumn (s t a t e [2] , expkey , round , 2) ; \
5 AddRoundKeyColumn (s t a t e [3] , expkey , round , 3) ;

Listing 6.2: Listing of the 32-bit AddRoundKey transformation

6.4.2 SubBytes and ShiftRows

We also combine the SubBytes transformation with the ShiftRows transformation by a priori
choosing the right index value for the table lookup.

During the SubBytes calculation we have to access each byte sr,c of the State matrix for
processing the table lookup (the S-box). To access each byte of the State matrix instead of
the whole column, we have to cast the 32-bit value from the State matrix to an 8-bit value
as it is done in Listing 6.3.

1 stat ic void SubBytesShiftRows (word s t a t e)
2 begin
3 byte tmp ;
4 byte s = (byte) s t a t e ;
5

6 /∗ column one ∗/
7 s [0] = sbox [s [0]] ;
8 s [4] = sbox [s [4]] ;

6.4 AES Optimizations for the TriCore 63

9 s [8] = sbox [s [8]] ;
10 s [1 2] = sbox [s [1 2]] ;
11

12 /∗ . . . Process the columns two , three and four . . . ∗/
13 end

Listing 6.3: Listing of the combined SybBytes and ShiftRows transformation

This causes the compiler to use the byte data type modifiers, e. g., LD.BU (load byte un-
signed). The LEA instruction computes the absolute address of the S-box and puts the result-
ing address in address register A[4]. The ADDSC.A (add scaled index to address) instruction
calculates the index value and puts the resulting address in address register A[2]. Finally,
the S-box byte at the calculated index is stored in the State matrix. The following assembler
listing depicts the combined SubBytesShiftRows operation for one byte of the State matrix.
Address register A[15] contains the next byte which is used as index for the TLU in the S-box
(line three).

LEA A4, sbox ; compute absolute address

; of the S-box

LD16.BU D15, [A15] ; load byte from the State

; matrix

ADDSC16.A A2, A4,D15,#0 ; use the byte as index

; for the TLU

LD16.BU D15, [A2] ; load the TLU value

ST16.BU [A15], D15 ; store the looked up value in

; the State matrix

We have to do these steps (excluding the LEA operation) for all 16 bytes bytes of the State
matrix. Since the State matrix of the reference implementations are also processed byte-wise,
we cannot achieve an speed improvement here.

6.4.3 MixColumns

The MixColumns transformation is well discussed in Section 2.3.5. We start with implement-
ing the multiplication function FFmulX in Listing 6.4.

Instead of the shift instructions which are used by Gladman, we use the multiplication by
{1B}16 for the reduction if an overflow occurs. We do this because the TriCore can multiply
in two clock cycles, which is still faster than the alternative shift and XOR method which is
used by Gladman and is denoted in Listing 2.5.

1 /∗ mu l t i p l y the four b y t e s o f w in p a r a l l e l and reduce the r e s u l t
2 ∗ wi th 0x1B (i f the h i g h e s t b i t o f the by t e i s s e t)
3 ∗/
4 word FFmulX(word w)

64 Chapter 6. Optimized and Randomized AES Implementations on TriCore

5 begin
6 word t = w & 0x80808080 ;
7

8 return ((w ^ t) << 1) ^ ((t>>7) ∗ 0x0000001B) ;
9 end

10 }

Listing 6.4: Parallel multiplication of the four bytes in word w by two

To implement the MixColumn operation from Listing 2.6 efficiently, we need the ability to
cyclically rotate the content of a 32-bit register by one, two and three bytes. If we take a look
at the instruction manual of the TriCore [Inf08b], we cannot find a direct instruction for a
rotation. Fortunately, we can utilize the DEXTR (extract from double register) instruction for
the rotation. The function __my_rot1 in Listing 6.5 returns the word w rotated by one byte
position to the left. To rotate the word w by two and three bytes the same instruction can
be used with a different starting bit, i. e., 16 for a rotation by two, and 24 for a rotation by
three bytes.

1 word __my_rot1(word w)
2 begin
3 word tmp ;
4

5 /∗ Rotate the content o f word w one by te ∗/
6 __asm(" dextr %0, %1, %1, #8" : "=d" (tmp) : " d " (w)) ;
7

8 return tmp ;
9 end

Listing 6.5: Rotate the four bytes of w one byte to the left

Listing 6.6 denotes the 32-bit implementation of the MixColumns transformation. The
function MixColumn calculates the MixColumns operation for the column w with four rotations
and four XOR operations. The MixColumns function in line six applies this transformation
on each column of the State matrix.

1 word MixColumn (word w)
2 begin
3 w = __my_rot3(w) ^ __my_rot2(w) ^
4 __my_rot1(w) ^ FFmulX(w ^ __my_rot3(w)) ;
5 return w;
6 end
7

8 MixColumns(word s [])
9 begin

10 MixColumn (s t a t e [0]) ;
11 MixColumn (s t a t e [1]) ;
12 MixColumn (s t a t e [2]) ;
13 MixColumn (s t a t e [3]) ;

6.5 Size Comparison of Unprotected Implementations 65

14 end

Listing 6.6: 32-bit version of MixColumns

6.4.4 Inverse MixColumns

Listing 6.7 depicts the InvMixColumns transformation. The InvMixColumn operation is
applied on each column w of the State matrix. The implementation follows the transformation
description in Section 2.3.5.

1 word InvMixColumn (word w)
2 begin
3 word tmp = 0 ;
4

5 tmp = __my_rot2 (w) ;
6 tmp = tmp ^ w;
7 tmp = FFmulX (tmp) ;
8 tmp = FFmulX (tmp) ;
9

10 w = w ^ tmp ;
11

12 w = MixColumn(w) ;
13

14 return w;
15 end
16

17 InvMixColumns (word s t a t e [])
18 begin
19 InvMixColumn (& s ta t e [0]) ;
20 InvMixColumn (& s ta t e [1]) ;
21 InvMixColumn (& s ta t e [2]) ;
22 InvMixColumn (& s ta t e [3]) ;
23 end

Listing 6.7: InvMixColumns transformation with 32-bit operations

6.5 Size Comparison of Unprotected Implementations

With the above discussed additional optimizations, we can achieve the memory consumption
presented in Table 6.1. The values are taken from the assembler listing file, which depicts the
data and code section size. The data section from Singh-1 contains the 256-byte xtimes table,
the 12 bytes round constant RC and the 256 bytes S-box. This leads to a total data memory
consumption of 524 bytes.

The data memory of Singh-2 does not contain the 256-byte xtimes table, it consists of the
S-box 256 bytes and 12 bytes for the round constant RC. The Szerwinski implementation only
holds the 256-byte S-box in the data memory.

66 Chapter 6. Optimized and Randomized AES Implementations on TriCore

Implementation Code Data
(bytes) (bytes)

Singh-1 720 524
Singh-2 724 268
Szerwinski 612 256
Optimized AES 1494 528

Table 6.1: Memory consumption comparison between the AES reference implementation from Brijesh
Singh and the Optimized TriCore implementation

It is obviously that the program code of the Optimized AES implementation is about
twice as large as the other implementations. This is because it includes encryption and
decryption whereas the first three implementations only include the encryption. The data
memory contains the S-box, the inverse S-box for the decryption, the 12-byte round constant
RC which is needed by the key expansion (Section 2.3.2) and four byte for the constant word
{80808080}16 which is needed in the FFmulX function. The performance analysis will be done
in Section 7.

6.6 Protected AES Implementation

The protected AES implementation uses masking, which is described in Section 4.2 and
randomization from Section 4.3 to be resistant against timing and first order DPA attacks.
We add D additional dummy operations to the real transformations. From these fixed D
dummy operations, a random number of D1 dummy operations, D1 ≤ D are executed before
the first round begins. After the last round, D −D1 dummy operations are executed. The
dummy operations work one a dummy State matrix DS with a dummy key DK.

Figure 6.1 denotes the program flow of the protected AES implementation. In the ran-
domization zones, the transformations are shuffled. This means for the AddRoundKey and
MixColumns transformations, that the starting column of the State matrix for these transfor-
mations is randomly chosen with two random bits rc. During the SubBytes transformation,
the first column is randomly chosen as well as the first row. The random starting row is
selected with the two random bits rr.

The currently used masks is denoted on the right side in Figure 6.1. The four mask bytes
M1 toM4 are used to mask the MixColumns transformation, as it is described in Section 4.2.5.
The SubBytes transformation is masked with the random mask M .

For masking and randomization 320 random bits are needed per AES encryption. Table 6.2
summarizes the names and usage of the random bits.

6.6.1 Masking the Optimized AES Implementation

We have outlined two critical operations which must be protected against a differential power
analysis attack. The initial two SubBytes transformations during the first two rounds as well
as the last two SubBytes transformations. We will present two independent masking schemes.
To protect the implementations against first order DPA attacks, we will use additive masking
from Section 4.2.1. In addition we will implement the Combined Masking in Tower Fields

6.6 Protected AES Implementation 67

Figure 6.1: Protected AES

Name No. of random bits Usage

D1 8 No. of dummy operations before the real cipher begins
rc 4 Random entry column
rr 4 Random entry row
Mx 8 Masks the S-box entries
M 8 Masks the S-box entry indices
M1 8 Masks the first column during a MixColumns transf.
M2 8 Masks the second column during a MixColumns transf.
M3 8 Masks the third column during a MixColumns transf.
M4 8 Masks the forth column during a MixColumns transf.
DS 128 Dummy State matrix
DK 128 Dummy Key

Table 6.2: Number of random values required for the protected AES Implementation wit additive
masking

68 Chapter 6. Optimized and Randomized AES Implementations on TriCore

approach from Section 4.2.4. Both masking schemes can be exchanged in the protected AES
implementation.

Additively Masked SubBytes

To mask the SubBytes transformation additively, the whole S-box has to be recalculated, see
Section 4.2.1. Because the recomputing of the S-box is an expensive operation in terms of run-
time, we make it configurable. We can decide during the compilation of the implementation,
after how many AES encryptions the S-box will be recalculated.

Listing 6.8 shows, how the new masked S-box (maskedSBox) is calculated. The two random
values M and Mx mask the new created S-box.

1 stat ic i n l i n e void aes_MaskSBox (u int8 ∗ maskedSBox ,
2 const u int8 sbox [] , const u int8 M, const u int8 Mx) {
3

4 int i ;
5

6 for (i = 0 ; i < 256; i++) {
7 maskedSBox [i ^ M] = sbox [i] ^ Mx;
8 }
9 }

Listing 6.8: Function to calculate the masked S-box

To perform a SubBytes transformation with the masked S-box, we have to add (XOR) the
value M to every byte sr,c of the current State matrix. After the masked transformation, we
have to remove the mask Mx from the looked-up value.

Two possibilities are conceivable. The mask values M and Mx can be added in the key
scheduling and mask the expanded round. Then the current round key would mask the State
in such a way we need it. But that implies, that we have to calculate the expanded key every
time, we change the masks for the S-box. Since our implementation is targeted on devices
with a fixed key, a recalculation of the expanded key would be very wasteful in terms of
runtime.

We chose the AddRoundKey transformation, to add the currently needed mask values to
the State. Listing 6.9 denotes the new AddRoundKeyColumn function, which additionally adds
the mask value m to the column w of the current State matrix.

1 stat ic i n l i n e void
2 AddRoundKeyColumn (u int32 ∗ w, const u int32 expkey [] , const u int8
3 round , const u int32 m, const u int8 column) {
4 ∗w ^= (expkey [(4U ∗ round) + column] ^ m) ;
5 }

Listing 6.9: Function to add the mask m and the current round key to the word w of the current State
matrix

6.6 Protected AES Implementation 69

SubBytes Masked with the CMTF Approach

As we have discussed in Section 2.3.8, we can calculate the inversion in so called composite
fields. In this section we show how the equations from Section 4.2.4 can be computed. This
can also be found in [WOL02]. First we have to transform an element a ∈ GF(28) to its
isomorphic composite field representation ahx+ al, ah, al ∈ GF(24):

a ∼= ahx+ al, a ∈ GF (28), ah, al ∈ GF (24). (6.1)

The transformation between the field representations can be calculated the following way:

aA = a1 ⊕ a7, aB = a5 ⊕ a7,
aC = a4 ⊕ a6,
al0 = aC ⊕ a0 ⊕ a5, al1 = a1 ⊕ a2,
al2 = aA, al3 = a2 ⊕ a4,
ah0 = aC ⊕ a5, ah1 = aA ⊕ aC ,
ah2 = aB ⊕ a2 ⊕ a3, ah3 = aB ,

where ai, i = 0, . . . , 7 are the bits from a ∈ GF(28) and ahj, alj , j = 0, . . . , 3 are the bits from
ah, al ∈ GF(24). The ⊕ denotes the XOR operation in GF(2).

The inverse transformation, which converts the two-term polynomial ahx+ al back into a
GF(28) element a ∈ GF (28) can be calculated following way:

aA = al1 ⊕ ah3, aB = ah0 ⊕ ah1,
a0 = al0 ⊕ ah0, a1 = aB ⊕ ah3,
a2 = aA ⊕ aB , a3 = aB ⊕ al1 ⊕ ah2,
a4 = aA ⊕ aB ⊕ al3, a5 = aB ⊕ al2,
a6 = aA ⊕ al2 ⊕ al3 ⊕ ah0, a7 = aB ⊕ al2 ⊕ ah3.

To compute the inversion in the composite field GF((24)2) an addition, multiplication, and
inversion is needed. Two elements from GF(24) can be added the following way:

(ahx+ al)⊕ (bhx+ bl) = (ah ⊕ bh)x+ (al ⊕ bl). (6.2)

The multiplication of two elements, which is defined in Section 2.3.8:

q(x) = a(x) · b(x) mod m4(x), a, b, q ∈ GF (24) (6.3)

can be computed the following way:

aA = a0 ⊕ a3, aB = a2 ⊕ a3,
q0 = a0b0 ⊕ a3b1 ⊕ a2b2 ⊕ a1b3, q1 = a1b0 ⊕ aAb1 ⊕ aBb2 ⊕ (a1 ⊕ a2)b3,

q2 = a2b0 ⊕ a1b1 ⊕ aAb2 ⊕ aBb3, q3 = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ aAb3,

where ai, bi, qi, i = 0, . . . , 3 are the bits from a, b and q ∈ GF(24).

70 Chapter 6. Optimized and Randomized AES Implementations on TriCore

To square an element in GF(24):

q(x) = a(x)2 mod m4(x) (6.4)

we calculate:

q0 = a0 ⊕ a2, q1 = a2,

q2 = a1 ⊕ a3, q3 = a3.

The multiplicative inversion a−1 of an element a ∈ GF(24) is calculated by the following
formula:

aA = a1 ⊕ a2 ⊕ a3 ⊕ a1a2a3
q0 = aA ⊕ a0 ⊕ a0a2 ⊕ a1a2 ⊕ a0a1a2 q1 = a0a1 ⊕ a0a2 ⊕ a1a2 ⊕ a3 ⊕ a1a3 ⊕ a0a1a3
q2 = a0a1 ⊕ a2 ⊕ a0a2 ⊕ a3 ⊕ a0a3 ⊕ a0a2a3 q3 = aA ⊕ a0a3 ⊕ a1a3 ⊕ a2a3

Now we can calculate the inversion of a whole two-term polynomial. Note that, this time,
the addition ⊕ and multiplication ⊗ are in GF(24) and are computed as we have discussed
above. The inversion of the whole two-term polynomial is done by calculating:

(ahx+ al)
−1 = a′hx+ a′l = (ah ⊗ d)x+ (ah ⊕ al)⊗ d (6.5)

where:
d = ((a2h ⊗ {E}16)⊕ (ah ⊗ al)⊕ a2l)−1, d ∈ GF(24) (6.6)

As we can see4, the transformation between the two field representations and the com-
putation of the inverse are very expensive computations because they work bitwise on the
elements. This values therefore will be pre-calculated stored in four lookup tables Td1 , Td2 , Tm
and Tinv as it is discussed in Section 4.2.4. Listing 6.10 denotes the inversion with these four
tables. This function gets a byte x from the State matrix and the mask m which masks the
calculation. The functions mapGF16 and imapGF16 transform the elements between the field
representations.

1 byte maskedInvertGF256 (byte x , byte m)
2 begin
3 byte xh , xl , mh, ml ;
4 byte d , d i ;
5 byte ah , al , a ;
6

7 mapGF16(x , &xh , &x l) ;
8 mapGF16(m, &mh, &ml) ;
9

10 d = td1 [xh] [mh] ^ td2 [xh] [x l] ^ tm [xh] [ml] ^
11 tm [x l] [mh] ^ tm [mh^ml] [ml] ;
12

13 d i = t inv [d] [mh] ;

4 by counting the XOR and AND operations, where the concatenation of two bits aiaj represents an AND

6.6 Protected AES Implementation 71

14

15 ah = tm [xh] [d i ^mh^ml] ^ mh ^ tm [d i ^mh^ml] [mh] ^
16 tm [xh] [ml]^tm [mh] [ml] ;
17

18 a l = tm [x l] [d i]^ ml^tm [d i] [ml] ^ tm [x l] [mh] ^
19 ah ^ mh ^ tm [mh] [ml] ;
20

21 imapGF16(&a , ah , a l) ;
22

23 return a ;
24 end

Listing 6.10: Function that calculates the inversion part of the SubBytes transformation with the
CMTF approach

Listing 6.11 depicts the calculation of Equation (2.12). The function rot1_right rotates
the byte b bitwise to the right. The function rot1_left rotates the byte b bitwise to the left.
The function parity computes the parity bit of the given byte.

1 byte a f f_tran s (byte a , byte c)
2 begin
3 byte t = 0 ;
4 byte b = 0 ;
5 byte mask = 0xF8 ;
6

7 for (int i =0; i <=7; i++) {
8 t = a & mask ;
9

10 mask = rot1_r ight (mask) ;
11 b = r o t1_ l e f t (b) ;
12 b = b ^ par i ty (t) ;
13 }
14

15 b = b ^ c ;
16

17 return b ;
18 end

Listing 6.11: Function to calculate the affine transformation part of the SubBytes transformation

The whole masked SubBytes transformation for one byte of the State matrix is denoted in
Listing 6.12.

1 byte maskedSubBytes (byte x , byte m)
2 begin
3 /∗
4 ∗ Input : Byte from the S ta t e matrix : x , mask : m
5 ∗ Output : inv=SubBytes (a) XOR m1 where m1 = af f_ trans (m)

72 Chapter 6. Optimized and Randomized AES Implementations on TriCore

6 ∗/
7

8 byte inv = maskedInvertGF256 (x , m) ;
9 a f f_tran s (&inv , 0x63) ;

10

11 return inv ;
12 end

Listing 6.12: Function to calculate the SubBytes transformation with the CMTF approach

6.6.2 Size Comparison of Protected Implementations

With the above discussed protected implementations, we can achieve the memory consump-
tion presented in Table 6.3. Both AES implementations are protected with dummy operations
and shuffling. The first uses additive masking to mask as masking aproach, the second uses
CMTF as masking aproach. Both implementations contain the code for encryption and de-
cryption.

Implementation Code Data
(bytes) (bytes)

protected with additive masking 4480 1046
protected with CMTF 4772 1552

Table 6.3: Memory consumption comparison between the protected AES implementation

The code size increases for the additive masked implementation, because we have addi-
tional functions that work on columns instead on the whole State matrix for the individual
transformations.

Table 6.4 denotes the content of the data section for the protected AES version with additive
masking, which is in total 1046 bytes.

Name No. of bytes Usage

const 4 Constant for the xtimes function
RC 12 Round constant
S-box 256 S-box for encryption
IS-box 256 S-box for decryption
masked-Sbox 256 Masks S-box for encryption
masked-ISbox 256 Masks S-box for decryption
2 · M 2 Masks the S-box entries (enc./dec.)
2 · MX 2 Masks the S-box indices (enc./dec.)
2 · MaskRoundCounter 2 Use counter for the masked S-boxes

Table 6.4: Content of the data section for the protected AES Implementation with additive masking

Table 6.5 denotes the content of the data section for the protected CMTF AES version.
We need 1552 bytes data memory for this implementation.

6.6 Protected AES Implementation 73

Name No. of bytes Usage

const 4 Constant for the xtimes function
RC 12 Round constant
tm 256 Table TM
tinv 256 Table TINV
td1 256 Table TD1
td2 256 Table TD2
map 256 Table to map an element from GF(28) to GF(24)
imap 256 Table to map an element from GF(24) to GF(28)

Table 6.5: Content of the data section for the protected AES Implementation with CMTF

Chapter 7

Implementation Results

In this chapter, the measurement setup is discussed. The runtime of the unprotected imple-
mentations is measured and compared in the following. The runtime behavior of the protected
AES implementations is analyzed in detail.

7.1 Measurement Setup

To compare the four unprotected AES implementations in size and speed, the given source files
are imported to the Tasking development environment. Therefore an own project for every
implementation is created where the following default build settings have been changed:

• optimization: level 2 (Optimize more),

• trade-off between speed and size: Level 4 (Size), and

• active build configuration: Release.

To measure the timing behavior of the AES implementations, the TriCore 1796 emulation
device (TC1796ED) development board is used, see Section 5.1.4.

The statistical analysis were carried out on a PC featuring a Intel Celeron processor at
2.53 GHz and 960 MB RAM. We used Matlab Release 2007b with the Statistics Toolbox
version 6.1 [Mat07].

7.2 Runtime Comparison of the Implementations

For the runtime measurement, we use the maximal CPU frequency of 150 MHz. The runtime
Xj , j = 1, . . . , 1000 of aes_Encrypt is measured for 1, 000 different encryptions. Thereby we
use one fixed key k and different plaintexts p. The new plaintext pj+1 we use is the output
cj of the previous encryption cj = aes_Encrypt(k, pj). Algorithm 8 shows the program
fragment used for the measurement process. We start the measurement right before the AES
run which is denoted by the tic instruction. After the run we stop the measurement (denoted
by toc) and save the elapsed runtime. The runtime X can be seen as a random variable that
is normally distributed, i. e. X = x1, . . . , x1000 with Xj ∼ N(µx, σ

2
x), xj iid. We will compare

the mean value X of X of the given implementations in Table 7.1.

The optimized AES implementation is with 78.31 µs (204.32 kbyte/s) the fastest implemen-
tation. It is about 2.6 times faster than the comparable implementation from Singh-2, which
also uses an expanded key and only table lookups for the SubBytes transformation. The faster

75

76 Chapter 7. Implementation Results

Algorithm 8: Pseudo code of the runtime measurement process. The runtime of
aes_Encrypt is measured and stored in Xj for every execution.

Input: k = {00010203050607080A0B0C0D0F101112}16, p1
for j = 1 to 1000 do

tic;
cj = aes_Encrypt(k, pj);
Xj = toc;
pj+1 = cj

end

No. Implementation ROM Encryption X Decryption X
(bytes) (µs) (µs)

1 Singh-1 1244 155.50 NA
2 Singh-2 992 208.25 NA
3 Szerwinski 868 185.92 NA
4 Optimized 2022 78.31 81.89
5 Protected 5526 ≈ 160 + (D · 3.8) ≈ 160 + (D · 4)
6 Prot. (CMTF) 6324 ≈ 1183 + (D · 56) NA

Table 7.1: Comparison of runtime and program size between the different TriCore AES implementa-
tions. The variable D denotes the number of dummy operations for the protected AES
implementation.

Singh-1 implementation also uses tables lookups for the xtimes part of the MixColumns trans-
formation. The runtime results of the measurements Singh-1 and Singh-2 fit with the results
from Brijesh Singh presented in [Sin08].

The runtime of the protected AES implementation depends on the amount of dummy
operations D and the number of AES runs which use the same mask for the S-box. The value
in line five of Table 7.1 depicts the runtime, if the S-box is recalculated on every new AES
run. With zero dummy operations one AES encryption takes 160µs (100 kbyte/s).

Line six depicts the runtime for the CTMF approach. This implementation is just a con-
cept. The decryption is not implemented. With this approach it is possible to remask every
SubBytes operation. The runtime does not depend on the used masks since it does not re-
calculate the S-box. It calculates the inversion as we described it in Section 4.2.4. With
1183 + (D · 56)µs it is about eight times slower than the protected implementation in line
five. This implementation can be used in higher order DPA resistant implementations.

Figure 7.1 and Figure 7.2 depict the runtime for D = 0 to D = 255. The S-box is
recalculated at every new AES run. We can see a linear runtime behavior which is described
by 160µs +D · 3.8µs for the encryption. For the decryption, we get 160µs +D · 4µs, line five
in Table 7.1. We can see, that the decryption takes a bit more time, which is mainly caused
by the inverse MixColumns transformation. For the two figures, we measured the runtime
for six different numbers of dummy operations, D ∈ {1, 50, 100, 150, 200, 255} according to
Algorithm 8 and drawed the regression line between the measured results. To calculate the
polynomial for the regression line we use the Matlab function polyfit on the measured

7.3 Timing Analysis 77

samples.

To check, if the S-box recalculation works correctly, we build a version with D = 10 dummy
operations and which recalculates the S-box after every 5th AES run. The measured runtime
of the first 50 runs is plotted in Figure 7.3. The peak denotes, that at this AES run the S-box
has been recalculated. We can observe, that a recalculation of the S-box takes about 38µs.

7.3 Timing Analysis

To measure the dependency between the runtime of an AES encryption and the input data
five measurements sets were created. Between the different measurement sets, the key k and
the plaintext p vary. Table 7.2 gives an overview about the key and plaintext pairs used.

Set Plaintext Key

1 {00000000000000000000000000000000}16 {00010203050607080A0B0C0D0F101112}16

2 {F658D966DA31D4A719096AB0209DBE4F}16 {14151617191A1B1C1E1F202123242526}16

3 {8A1E63C3C5F274CBBD8E26F0D91C179D}16 {14151617191A1B1C1E1F202123242526}16

4 {000102030405060708090A0B0C0D0E0F}16 {3C3D3E3F41424344464748494B4C4D4E}16

5 {000102030405060708090A0B0C0D0E0F}16 {50515253555657585A5B5C5D5F606162}16

Table 7.2: The five different measurement sets

All measurement sets contain random data, but set two and set three share the same keys
and different plaintexts and set four and five use the same plaintext but different keys.

The runtime Xj of every encryption run (aes_Encrypt) was measured 1, 000 times for each
set. Algorithm 9 denotes the measurement process.

Algorithm 9: Pseudo code for the timing analysis. The execution time of aes_Encrypt
is measured and stored in Xj for every measurement set i = 1, . . . , 5

Input: k1, . . . , k5, p1, . . . , p5
for i = 1 to 5 do1

for j = 1 to 1000 do2

tic;3

aes_Encrypt(ki, pi);4

Xj = toc;5

end6

end7

For the timing analysis, we need a higher resolution. Because we cannot increase the
precision of the MCDS timing measurement, we decrease the CPU frequency instead. The
CPU frequency is controlled by the PLL1. We have to setup the four main parameters: the
P-Divider, N-Divider, K-Divider, and VCO2 range where:

1 The Phase-Locked Loop (PLL) generate the CPU and system clock inside the TC1796.
2 Voltage Controlled Oscillator

78 Chapter 7. Implementation Results

0 50 100 150 200 250
0

200

400

600

800

1000

1200

No. of dummy operations D

ru
nt

im
e

in
 u

s

y = 3.8*x + 1.6e+002

Figure 7.1: Runtime of the protected AES encryption with 1 ≤ D ≤ 255. The S-box is recalculated
after every AES encryption.

0 50 100 150 200 250
0

200

400

600

800

1000

1200

No. of dummy operations D

ru
nt

im
e

in
 u

s

y = 4*x + 1.6e+002

Figure 7.2: Runtime of the protected AES decryption with 1 ≤ D ≤ 255. The S-box is recalculated
after every AES decryption.

7.3 Timing Analysis 79

0 5 10 15 20 25 30 35 40 45 50

200

210

220

230

240

250

260

AES encryption runtime

S−box recalculation

...

Figure 7.3: Runtime of the protected AES encryption with ten dummy operations (D=10). The S-box
is recalculated after every 5th AES encryption.

80 Chapter 7. Implementation Results

fCPU =
N

P ·K · fOSC . (7.1)

With N = 100, P = 5 and K = 16 we get the smallest frequency fCPU = 25 MHz. The
VCO range is set to 400 – 500 MHz.

The smallest measurable time unit ∆ (the absolute failure) we can measure with the MCDS
is 250 µs.To get a more precise time domain we oversample our measurements by the factor
of 163, which means we average the measurement over 16 AES runs.

7.3.1 Timing Analysis of the Unprotected AES Implementations

Table 7.3 to Table 7.6 contain the arithmetic mean values X, i. e., an estimator for the
expected value µX , and the empirical standard deviation sX , i. e., an estimator for σX , each
for all 1, 000 measurements.

In Table 7.3 the timing behavior of the implementation from Szerwinski and in Table 7.4
our optimized AES implementation are depicted. Both leak timing information, since they
show a different runtime for different combinations of the key and plaintext.

Set Mean X in µs Standard deviation sX in µs

1 1119.46 0.0195204
2 1117.17 0.0186754
3 1117.26 0.0207298
4 1134.94 0.0216387
5 1130.26 0.0212278

Table 7.3: Runtime analysis of the AES implementation from Szerwinski

Set Mean X in µs Standard deviation sX in µs

1 461.204 0.018
2 461.164 0.014
3 461.204 0.018
4 461.205 0.018
5 461.205 0.018

Table 7.4: Runtime analysis of the optimized AES encryption

The histogram in Figure 7.4 confirms this. We can distinguish the different runtimes for
the different measurement sets. For example, we can clearly distinguish between set one on
the left and set five on the right side of the histogram.

In Table 7.6, the measurement results from Singh-2 are given. In this AES implementation,
the MixColumns transformation is calculated on-the-fly, as described in Section 2.3.3. It is
the only transformation, with a conditional part (xtimes) during the calculation. As expected,

3 It would be enough to use oversampling by 10 to fulfill the sampling theorem, a further factor 6 is for
higher precision.

7.3 Timing Analysis 81

576.4 576.42 576.44 576.46 576.48 576.5 576.52 576.54 576.56 576.58
0

100

200

300

400

500

600

700

800

t in uS

#

data1
data2
data3
data4
data5

Figure 7.4: Histogram of the runtime for optimized AES implementation

this leads to an exploitable timing consumption. The mean values X depend on the processed
data.

Set Mean X in µs Standard deviation sX in µs

1 967.462 0.021
2 966.462 0.020
3 968.342 0.021
4 966.701 0.017
5 966.741 0.019

Table 7.5: Runtime analysis of the AES implementation from Singh-1

In Table 7.5, the measurement results from Singh-1 are shown. Also in this implementa-
tion, the mean values X for the five different measurements sets are distinguishable. The
implementation from Singh-1 contains no obviously data dependent parts which would affect
the runtime. Here the xtimes part of the MixColumns transformation is realized as a lookup
table. We guess, that the different runtime results from platform depending scratchpad-RAM
effects. This contradicts our assumption from Section 1.2, that a table lookup has a constant
runtime. Thus we can observe a kind of cache effect.

Because the Protected AES implementation is based on the optimized AES implementa-
tion, it can be assumed, that the protected implementation also shows a different timing
consumption on different key and plaintext pairs. It must be verified, that this information
cannot be used during a timing analysis attack.

82 Chapter 7. Implementation Results

Set Mean X in µs Standard deviation sX in µs

1 1282.25 0.020
2 1281.97 0.019
3 1281.29 0.020
4 1281.21 0.017
5 1279.69 0.020

Table 7.6: Runtime analysis of the AES implementation from Singh-2

7.3.2 Timing Analysis of the Protected AES Implementation

For the measurements we use D = 16 dummy operations. The SubBytes transformation is
implemented as we described it in Section 6.6.1. We re-mask the S-box on every new run of
the cipher.

Encryption

Table 7.7 depicts the mean values X for the different measurement sets, which also differs
but with a much smaller variance.

Set Mean X in µs Standard deviation sX in µs

1 1232.82 0.538
2 1232.80 0.540
3 1232.76 0.551
4 1232.80 0.560
5 1232.75 0.540

Table 7.7: Runtime of protected AES encryption with 16 dummy operations (D=16)

Figure 7.5 depicts the runtime of the an AES encryption with D = 16 dummy operations.
The runtime was measured 1,000 times. As we expect, the most measured runtimes lie in the
area x± sx.

The histogram in Figure 7.6 depicts that it is harder to distinguish between the measure-
ment sets on the protected AES implementation.

To test, if the different measurement sets really do not lead to a distinguishable runtime,
the two sample t-test is used. We fix the indices i and j. The statistical question we are
interested in is if we can clearly distinguish between the sets Xik and Y jk , k = 1, . . . , 1000. The
t-test is applied among each mean value X = X(i), i = 1, . . . , 5 and Y = X(j), j = 1, . . . , 5,
where:

• Xk – Runtime of aes_Encrypt in µs for set i, with kth measurement, k = 1, . . . , 1000

• Yk – Runtime of aes_Encrypt in µs for set j, with kth measurement, k = 1, . . . , 1000

• Condition: Xk, Yk i.i.d., Xk ∼ N(µX , σ
2
X), Yk ∼ N(µY , σ

2
Y), k = 1, . . . , 1000, σ2

X = σ2
Y

and unknown

7.3 Timing Analysis 83

0 100 200 300 400 500 600 700 800 900 1000

1232

1232.2

1232.4

1232.6

1232.8

1233

1233.2

1233.4

1233.6

1233.8

Figure 7.5: Runtime of the protected AES encryption (set four) with 16 dummy operations (D=16).
The lines denote the mean (middle) and the variance of the runtime.

1232 1232.2 1232.4 1232.6 1232.8 1233 1233.2 1233.4 1233.6 1233.8
0

20

40

60

80

100

120

140

160

t in uS

#

data1
data2
data3
data4
data5

Figure 7.6: Histogram of the runtime for protected AES encryption with 16 dummy operations (D=16)

84 Chapter 7. Implementation Results

• Null hypothesis: H0 : µX = µY versus H1 : µX 6= µY

Table 7.8 denotes the result for the protected AES implementation. The zero indicates that
the test cannot be rejected. This means that the mean values come from the same population
and are not distinguishable. This holds for every measurement set combination. We get more
information from the p-value on the right hand side of Table 7.8.

The p-value is the probability of observing the given result, [or one more extreme
values] under the assumption that the null hypothesis is true. If the p-value is
less than α, then you reject the null hypothesis. For example, if α = 0.05 and
the p-value is 0.03, then you reject the null hypothesis. The converse is not true.
If the p-value is greater than α, you do not accept the null hypothesis. You just
have insufficient evidence to reject the null hypothesis.

(MATLAB Statistics Toolbox User’s Guide)

j/i 1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

j/i 1 2 3 4 5

1 0.099 0.537 0.702 0.210
0.099 1 0.260 0.111 0.733
0.537 0.260 1 0.715 0.465
0.702 0.111 0.715 1 0.260
0.210 0.733 0.465 0.260 1

Table 7.8: Two sample t-test for the protected AES encryption with 16 dummy operations (left) and
p-values of the test (right)

One pre-condition for the applicability of the two sample t-test is that the unknown vari-
ances of both random variables X and Y are the same. We can check this with Fisher’s F-test.
Fisher’s F-test verifies if the variances σ2

X and σ2
Y of two random variables X and Y which are

normally distributed with unknown and not necessarily equal mean values µx and µy are the
same, see Section 3.1.3. Note, however, that the two-sample t-test checks statistical moments
of first order, whereby the F-test checks statistical moments of second order. Effects of order
two are more difficult to detect, in general, because they are smaller than effects of first order.

• Xk – Runtime of aes_Encrypt in µs for set i, with kth measurement, k = 1, . . . , 1000

• Yk – Runtime of aes_Encrypt in µs for set j, with kth measurement, k = 1, . . . , 1000

• Condition: Xk, Yk i.i.d., Xk ∼ N(µX , σ
2
X), Yk ∼ N(µY , σ

2
Y), k = 1, . . . , 1000

• Null hypothesis: H0 : σ2
x = σ2

y versus H1 : σ2
x 6= σ2

y

Table 7.9 denotes the F-test results for the measured timings. Every measurement set is
compared with each other.

7.3 Timing Analysis 85

j/i 1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

j/i 1 2 3 4 5

1 0.769 0.896 0.421 0.611
0.769 1 0.870 0.279 0.828
0.896 0.870 1 0.353 0.704
0.421 0.279 0.353 1 0.200
0.611 0.828 0.704 0.200 1

Table 7.9: F-test for the protected AES encryption with 16 dummy operations (left) and the p-values
of the test (right)

Set Mean X in µs Standard deviation sX in µs

1 1268.25 0.545
2 1268.23 0.546
3 1268.19 0.560
4 1268.23 0.566
5 1268.18 0.547

Table 7.10: Runtime of protected AES decryption with 16 dummy operations (D=16)

1267.2 1267.4 1267.6 1267.8 1268 1268.2 1268.4 1268.6 1268.8 1269 1269.2
0

20

40

60

80

100

120

140

t in uS

#

data1
data2
data3
data4
data5

Figure 7.7: Histogram of the runtime for protected AES decryption with 16 dummy operations (D=16)

86 Chapter 7. Implementation Results

Decryption

Table 7.10 depicts the mean value X of the runtime for the given set. The mean values also
differs for different key and plaintext combinations but with a much bigger variance.

The histogram in Figure 7.7 depicts that it is harder to make a differentiation between
the measurement sets on the protected AES implementation. The appearance of a specific
runtime for a specific measurement set is almost normal distributed over all possible measured
timings.

To test, if the different measurement sets really do not lead to a distinguishable runtime,
we also use the two sample t-test. The t-test is applied among each mean value X = X(i),
i = 1, . . . , 5 and Y = X(j), j = 1, . . . , 5, where:

• Xk – Runtime of aes_Decrypt in µs for set i, with kth measurement, k = 1, . . . , 1000

• Yk – Runtime of aes_Decrypt in µs for set j, with kth measurement, k = 1, . . . , 1000

• Condition: Xk, Yk i.i.d., Xk ∼ N(µX , σ
2
X), Yk ∼ N(µY , σ

2
Y), k = 1, . . . , 1000, σ2

X = σ2
Y

and unknown

• Null hypothesis: H0 : µX = µY versus H1 : µX 6= µY
Table 7.11 denotes the result for the decryption. The zero indicates that the hypothesis

cannot be rejected. This means that the mean values probably come from the same population
and are not distinguishable. This holds for every measurement set combination.

j/i 1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

j/i 1 2 3 4 5

1 0.088 0.534 0.674 0.220
0.088 1 0.241 0.096 0.698
0.534 0.241 1 0.726 0.481
0.674 0.096 0.726 1 0.276
0.220 0.698 0.481 0.276 1

Table 7.11: Two-sample t-test for the protected AES decryption with 16 dummy operations (left) and
the p-values of the test (right)

The condition for the t-test is, that the unknown variance of both random variables X and
Y is the same. To ensure this, we use the F-test again.

• Xk – Runtime of aes_Decrypt in µs for set i, with kth measurement, k = 1, . . . , 1000

• Yk – Runtime of aes_Decrypt in µs for set j, with kth measurement, k = 1, . . . , 1000

• Condition: Xk, Yk i.i.d., Xk ∼ N(µX , σ
2
X), Yk ∼ N(µY , σ

2
Y), k = 1, . . . , 1000

• Null hypothesis: H0 : σ2
x = σ2

y versus H1 : σ2
x 6= σ2

y

Table 7.12 denotes the F-test results for the measured timings. We can see, that they are
all above the 5%.

The statistical tests show, that we cannot distinguish between the different sets, i. e., the
different keys, on hand of the runtime behavior of our protected AES implementation. Thus,
we can assume that the protected AES implementation is resistant against timing analysis.

7.4 Power Analysis 87

j/i 1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

j/i 1 2 3 4 5

1 0.786 0.877 0.344 0.564
0.786 1 0.907 0.230 0.757
0.877 0.907 1 0.275 0.672
0.344 0.230 0.275 1 0.140
0.564 0.757 0.672 0.140 1

Table 7.12: Fishers F-test for the protected AES decryption with 16 dummy operations (left) and
p-values of the test (right)

7.4 Power Analysis

It is not in the scope of this thesis to analyze the protected AES implementation with respect
to Power Analysis resistance. The design of the countermeasures was chosen in such a way
that the implementation should be resistant against Simple Power Analysis and standard
Correlation and Differential Power Analysis, see [HOM06]. This means that more traces are
needed for a successfully mounted DPA attack than for an attack against an unprotected
implementation. However, this implementation is susceptible to advanced power analysis
techniques, especially second order attacks.

The theoretical results from [THM07] and the practical results from [TH08] showed, that
the number of required traces for a successful mounted SCA increases by (D + 1) · 16. The
number of traces which are needed to attack an unprotected implementation on the TriCore
has not been investigated yet.

To measure the resistance against a DPA, one should start to build a measurement setup.
The setup could be tested by analyzing an unprotected AES version like the optimized AES
implementation. This implementation should be fairly easy to attack.

Afterwards the protected AES implementation should be attacked with methods like win-
dowing and second order DPA, see Section 4.3.1. However, this requires a fair amount of
experience in attacking protected implementations.

Chapter 8

Conclusion

The topic of this master thesis was the side-channel resistant implementation of the Advanced
Encryption Standard (AES) on a typical automotive processor.

Symmetric crypto primitives are the basis for most cryptographic architectures. The Ad-
vanced Encryption Standard (AES) is the current standard for block ciphers. An efficient
and secure implementation of this algorithm therefore is very important for future security
mechanisms in the automotive world. While there are many fairly efficient AES implemen-
tations in the field, most of them are not optimized for embedded systems, especially in the
automotive world. Most AES implementations are for 8-bit systems, e.g., smart cards, or for
32-bit architectures with lots of memory. However, in the automotive domain we often have
32-bit RISC processors and tight constraints on the memory and the program size while speed
is most often not an issue. Therefore, the selection and implementation of an unprotected
AES specially adapted for the needs of the automotive industry is necessary.

The topic of side-channel attacks is one of the most important issues in applied cryptogra-
phy. In the literature, one can find many results on high security systems like smart cards.
However, until now we are not aware of any side-channel analysis resistant implementation
of AES on automotive processors. For the first time, an efficient (32-bit optimized) and se-
cured (countermeasures against timing and power analysis) AES implementation has been
investigated on automotive platforms.

The target platform for the implementation was an Infineon TriCore TC1796. This proces-
sor is widely used in Engine Control Units (ECU) made by Robert Bosch GmbH as well as
by Continental AG, for example. It is a 32-bit RISC processor.

After a short introduction of the Advanced Encryption Standard we discussed in Chapter 2
various implementation options for unsecured implementations. Since many of the existing
highly efficient implementations are very processor-specific and are therefore not directly
comparable, we introduced a simple processor model for comparison. Note that the result-
ing estimates are not very meaningful for itself but are important with respect to the other
implementations. Thus, not the absolute number of clock cycles and memory consumption
is important but the relative factor compared to other implementations. Specifically, we
estimated a faster runtime with factor 2.2 between an existing, optimized 8-bit AES imple-
mentation(3808 cc) and a 32-bit optimized implementation (1732 cc).

In practice, we could achieve this factor with our real optimized AES implementation
(78.31µs) which utilizes the TriCore instruction set and uses the whole 32-bit register size.
Compared to the optimized 8-bit implementation (Singh-2 with 208.3µs) our implementation
is faster by the factor 2.6 as the reference implementation.

Since the overall security level of automotive processors is moderate (no secure memory, for
example) it should be enough to secure an AES implementation against the most dangerous,

89

90 Chapter 8. Conclusion

low-level attacks, i.e., Timing Analysis (TA), Simple and Differential Power Analysis (SPA,
DPA) (first order). In Chapter 3 we therefore discussed various attack techniques for Side
Channel Analysis (SCA) and gave an overview about software countermeasures against timing
analysis and (first order) Differential Power Analysis (DPA).

With our goal, an efficient and protected AES implementation, in mind we analyzed the
existing SCA countermeasures in terms of performance, memory requirement and known at-
tacks in Chapter 4. Using our processor model, we showed that AES implementations with
resistance against second order DPA attacks require, in general, over ten times more clock
cycles than unprotected implementation. Irrespective of the security aspects, overheads of
this order are too much for an implementation on automotive processors. So we decided to
use a first order DPA resistant masking method and combine it with randomization (shuffling
and dummy states) as proposed in [HOM06] and [THM07]. In these two papers, the au-
thors carefully selected various low-cost countermeasures to achieve the overall security level
required.

In addition to this method, we provide a concept study for a masking scheme called CMTF
(Combined Masking in Tower Fields), that can be used in an implementation that is resis-
tant against higher order DPA attacks. Originally, CMTF has been proposed as hardware
countermeasure. However, [OS05] used precomputed tables for the transformation between
sub-fields, making it thus applicable as a software countermeasure. The CMTF method with
precomputed tables can be combined with the randomization approach by Herbst et al., i. e.,
shuffling and dummy states).

It has turned out, that the affine transformation which is part of the SubBytes trans-
formation is a bottleneck in terms of runtime because it works bitwise on each byte. An
improvement would be if four affine transformation would be calculated on four bytes of the
State matrix in parallel. This would require the possibility of rotating the four bytes in a
word in parallel. The CMTF masking scheme as well as the other scheme which calculate the
SubBytes transformation on the fly can be used in implementations which use more than one
mask for the bytes of the State matrix, since the RAM consumption of the additive masking
increases very fast with the number of masks used.

In Chapter 7 we evaluated the timing behavior of our implementations. We showed, that
the unprotected implementations are vulnerable to timing analysis attacks. In addition we
showed, that our protected implementation is probably timing analysis resistant. Power
analysis has been left as a subject for further investigation.

In our theoretical part, we estimated a runtime slowdown by a factor of 1.9 between the
32-bit optimized implementation (1732 cc) and the additive masked implementation (3332 cc).
We could observe this factor in practice at the real optimized implementation (≈ 78µs) and
the protected implementation with no dummy operations (≈ 160µs). This gives us a factor
of two. The security level can be further increased by introducing additional dummy states
(D 6= 0).

Summarizing, for the first time we have an efficient and side-channel secured AES implemen-
tation on a typical automotive processor. The resulting implementation is very competitive in
terms of program and memory size as well as performance. The security of the implementation
is adapted to the current security level of automotive processors (low-cost countermeasures
since we have no secure memory or tamper protection). The implementation can be used as
a plug and play solution which can replace vulnerable unprotected AES implementations.

We predict, that in the mid-term future, no automotive manufacturer or supplier can afford

91

to implement SCA-vulnerable cryptographic algorithms. We have made a first step into this
direction.

Bibliography

[AG01] M. L. Akkar and Chr. Giraud. An Implementation of DES and AES, Secure
against Some Attacks. In C. K. Koç, D. Naccache, and Chr. Paar, editors, Pro-
ceedings of CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages
309–318. Springer-Verlag, 2001.

[AK98] Ross J. Anderson and Markus G. Kuhn. Low Cost Attacks on Tamper Resistant
Devices. In Proceedings of the 5th International Workshop on Security Protocols,
pages 125–136, London, UK, 1998. Springer-Verlag.

[AKS07] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the Power of Simple
Branch Prediction Analysis. In ASIACCS 2007: Proceedings of the 2nd ACM
symposium on Information, computer and communications security, pages 312–
320, New York, NY, USA, 2007. ACM.

[APSQ06] Cédric Archambeau, Eric Peeters, François-Xavier Standaert, and Jean-Jacques
Quisquater. Template Attacks in Principal Subspaces. In Louis Goubin and
Mitsuru Matsui, editors, Proceedings of CHES 2006, volume 4249 of Lecture Notes
in Computer Science, pages 1–14. Springer-Verlag, 2006.

[BBF+03] Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti, and Ste-
fano Marchesin. Efficient Software Implementation of AES on 32-bit Platforms.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Proceed-
ings of CHES 2002: Revised Papers from the 4th International Workshop on
Cryptographic Hardware and Embedded Systems, volume 2523 of Lecture Notes in
Computer Science, pages 159–171. Springer-Verlag, 2003.

[Ber05] Daniel J. Bernstein. Cache-timing Attacks on AES, 2005. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.

[BGK04] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably Secure Mask-
ing of AES. In H. Handschuh and M. Anwar Hasan, editors, Selected Areas in
Cryptography – SAC 2004, number 3357 in Lecture Notes in Computer Science,
pages 69–83. Springer-Verlag, 2004.

[Bos98] Karl Bosch. Statistik-Taschenbuch. Oldenbourg, January 1998.

[BS08] Daniel Bernstein and Peter Schwabe. New AES Software Speed Records. Cryp-
tology ePrint Archive, Report 2008/381, 2008. http://eprint.iacr.org/.

[BSI01] Bundesamt für Sicherheit in der Informationstechnik BSI. AIS 20: Funktionalität-
sklassen und Evaluationsmethodologie für deterministische Zufallszahlengenera-
toren. Anwendungshinweise und Interpretationen zum Schema (AIS) Version 1,

93

94 Bibliography

2.12.1999, BSI, 2001. Available at http://www.bsi.bund.de/zertifiz/zert/

interpr/ais20.pdf.

[CB09] D. Canright and Lejla Batina. A Very Compact “Perfectly Masked” S-Box for
AES (corrected). Cryptology ePrint Archive, Report 2009/011, 2009. http://

eprint.iacr.org/.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
Power Analysis in the Presence of Hardware Countermeasures. In Christof Paar
and Çetin Kaya Koç, editors, Cryptographic Hardware and Embedded Systems -
CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages 252–263.
Springer-Verlag, 2000.

[CGPR08] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, and Matthieu Ri-
vain. Attack and Improvement of a Secure S-Box Calculation Based on the Fourier
Transform. In Cryptographic Hardware and Embedded Systems – CHES 2008,
volume 5154 of Lecture Notes in Computer Science, pages 1–14. Springer-Verlag,
2008.

[Cha82] David Chaum. Blinding Signatures for Untraceable Payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology –
CRYPTO 1982, pages 199–203, 1982.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In Pro-
ceedings of CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
13–28, London, UK, August 2002. Springer-Verlag.

[Den07] Tom St Denis. Cryptography for Developers. Syngress Media, 2007.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael, AES – The Advanced
Encryption Standard. Springer-Verlag, 2002.

[FIP01] FIPS-197. Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197, November 2001. Available at http://csrc.nist.

gov/.

[Gla01] Brian Gladman. A Specification for Rijndael, the AES Algorithm.
v3.1.0, http://fp.gladman.plus.com/cryptography_technology/rijndael/

aes.spec.v310.pdf, 2001.

[Gla07] Brian Gladman. A Specification for Rijndael, the AES Algorithm.
v3.1.6, http://fp.gladman.plus.com/cryptography_technology/rijndael/

aes.spec.v316.pdf, 2007.

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
Stochastic Methods. In Louis Goubin and Mitsuru Matsui, editors, Proceedings
of CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 15–29.
Springer-Verlag, 2006.

Bibliography 95

[GT03] Jovan Dj. Golic and Christophe Tymen. Multiplicative Masking and Power Anal-
ysis of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Proceedings of CHES 2002, volume 2523 of Lecture Notes in Computer Science,
pages 198–212. Springer-Verlag, 2003.

[HJM05] Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream Cipher
for Constrained Environments. eSTREAM, ECRYPT Stream Cipher. Technical
report, 2005/010, ECRYPT (European Network of Excellence for Cryptology),
2005.

[HKQ99] Gael Hachez, Francois Koeune, and Jean-Jacques Quisquater. cAESar Results:
Implementation of Four AES Candidates on Two Smart Cards. In Morris
Dworkin, editor, Proceedings of Second Advanced Encryption Standard Candidate
Conference, pages 95–108, Rome, Italy, March 22-23, 1999, 1999.

[HMS00] Erwin Hess, Bernd Meyer, and Torsten Schütze. Information Leakage Attacks
Against Smart Card Implementations of Cryptographic Algorithms and Counter-
measures – A Survey. In EUROSMART Security Conference, pages 55–64, 2000.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart Card
Implementation Resistant to Power Analysis Attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, Proceedings of ACNS 2006, volume 3989 of Lecture
Notes in Computer Science, pages 239–255. Springer-Verlag, 2006.

[IAI06] IAIK-2006. VLSI Products – Software Modules. http://www.iaik.tugraz.at/

research/vlsi/02_products/index.php, January 2006.

[Inf02] Infineon Technologies AG. TriCore 2, 32-bit Unified Processor Core, 2002,08
edition, Sept 2002.

[Inf05] Infineon Technologies AG. TriCore™, Instruction Set Simulator (ISS), User
Guide, 2005-01 edition, January 2005.

[Inf07] Infineon Technologies AG. TC1796 32-Bit Single-Chip Microcontroller, TriCore,
User’s Manual, 2007-07 edition, July 2007.

[Inf08a] Infineon Technologies AG. TC1796 32-Bit Single-Chip Microcontroller, TriCore,
Data Sheet, 2008-04 edition, April 2008.

[Inf08b] Infineon Technologies AG. TC1796 32-Bit Single-Chip Microcontroller, TriCore,
Instruction Set, V1.3 & V1.3.1 Architecture, 2008-01 edition, July 2008.

[JPS05] Marc Joye, Pascal Paillier, and Berry Schoenmakers. On Second-Order Differen-
tial Power Analysis. In CHES 2005: Revised Papers from the 7th International
Workshop on Cryptographic Hardware and Embedded Systems, volume 3659 of
Lecture Notes in Computer Science, pages 293–308. Springer-Verlag, 2005.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. In Journal des sciences militaires,
volume IX, pages 5–83, Jan. 1883.

96 Bibliography

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J. Wiener,
editor, Proceedings of CRYPTO 1999, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer-Verlag, 1999.

[Kna06] Anthony W. Knapp. Basic Algebra. Birkhäuser, 2006.

[Koc96] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In N. Koblitz, editor, Proceedings of CRYPTO 1996, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag, 1996.

[Mat07] The MathWorks, Inc. Statistics Toolbox User’s Guide, Version 6.1, 2007.

[MDS99] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Investigations of
Power Analysis Attacks on Smartcards. In Proceedings of the USENIX Workshop
on Smartcard Technology, pages 151–162, Berkeley, CA, USA, 1999. USENIX
Association.

[Mes00] Thomas Messerges. Securing the AES Finalists Against Power Analysis Attacks.
In Bruce Schneier, editor, Proceedings of FSE 2000, volume 1978 of Lecture Notes
in Computer Science, pages 150–164. Springer-Verlag, 2000.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis At-
tacks: Revealing the Secrets of Smart Cards. Springer-Verlag, 2007. http:

//www.dpabook.org.

[MS03] Sumio Morioka and Akashi Satoh. An Optimized S-box Circuit Architecture for
Low Power AES Design. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, CHES 2002: Revised Papers from the 4th International Workshop
on Cryptographic Hardware and Embedded Systems, volume 2523 of Lecture Notes
in Computer Science, pages 172–186. Springer-Verlag, 2003.

[NIS98] NIST. Known Answer Test for Advanced Encryption Standard (AES). http:

//csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip, 1998.

[NS06] Michael Neve and Jean-Pierre Seifert. Advances on Access-Driven Cache Attacks
on AES. In Selected Areas in Cryptography, pages 147–162, 2006.

[OMP04] Elisabeth Oswald, Stefan Mangard, and Norbert Pramstaller. Secure and Efficient
Masking of AES – a Mission Impossible? Cryptology ePrint Archive, Report
2004/134, 2004. http://eprint.iacr.org/.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. A
Side-Channel Analysis Resistant Description of the AES S-Box. In Henri Gilbert
and Helena Handschuh, editors, Proceedings of FSE 2005, volume 3557 of Lecture
Notes in Computer Science, pages 413–423. Springer-Verlag, 2005.

[OS05] Elisabeth Oswald and Kai Schramm. An Efficient Masking Scheme for AES
Software Implementations. In JooSeok Song, Taekyoung Kwon, and Moti Yung,
editors, Proceedings of WISA 2005, number 3786 in Lecture Notes in Computer
Science, pages 292–305. Springer-Verlag, 2005.

Bibliography 97

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Coun-
termeasures: The Case of AES. In David Pointcheval, editor, Proceedings of
CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 1–20.
Springer-Verlag, 2006.

[Paa94] C. Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. Dissertation, Institute for Experimental Mathematics, Universität Es-
sen, Deutschland, 1994. http://crypto.rub.de/imperia/md/content/texte/

theses/paar_php_diss.pdf.

[R0̈3] Christian Röpke. Praktikum B: Embedded Smartcard Microcontrollers. http:

//www.christianroepke.de/studium_praktikumB.html, 2003.

[RDJ+01] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao,
and Pankaj Rohatgi. Efficient Rijndael Encryption Implementation with Com-
posite Field Arithmetic. In CHES 2001: Proceedings of the Third International
Workshop on Cryptographic Hardware and Embedded Systems, Lecture Notes in
Computer Science, pages 171–184. Springer-Verlag, 2001.

[Rij01] Vincent Rijmen. Efficient Implementation of the Rijndael S-Box. Technical report,
Katholieke Universiteit Leuven, Dept. ESAT, Belgium, 2001.

[Seu05] Hermann Seuschek. DPA-Analyse von Implementierungen symmetrischer kryp-
tographischer Algorithmen. Diplomarbeit, Technische Universität München,
2005.

[Sin08] Brijesh Singh. Bosch Cryptographic Library – Documentation. Technical report,
Robert Bosch GmbH, CR/AEA, 2008.

[SMTM01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Compact
Rijndael Hardware Architecture with S-Box Optimization. In Colin Boyd, editor,
Proceedings of ASIACRYPT ’2001, volume 2248 of Lecture Notes in Computer
Science, pages 239–254. Springer-Verlag, 2001.

[Sti05] Douglas R. Stinson. Cryptography: Theory and Practice. CRC press, 3rd edition,
2005.

[TH08] Stefan Tillich and Christoph Herbst. Attacking State-of-the-Art Software
Countermeasures—A Case Study for AES. In Elisabeth Oswald and Pankaj Ro-
hatgi, editors, Cryptographic Hardware and Embedded Systems – CHES 2008,
volume 5154 of LNCS, pages 228–243. Springer, 2008.

[THM07] Stefan Tillich, Christoph Herbst, and Stefan Mangard. Protecting AES Software
Implementations on 32-Bit Processors Against Power Analysis. In Jonathan Katz
and Moti Yung, editors, Proceedings of ACNS 2007, volume 4521 of Lecture Notes
in Computer Science, pages 141–157. Springer-Verlag, 2007.

[Tri03] Elena Trichina. Combinational Logic Design for AES Subbytes Transformation
on Masked Data. Technical report, Cryptology ePrint Archive: Report 2003/236,
2003.

98 Bibliography

[TSG02] Elena Trichina, Domenico De Seta, and Lucia Germani. Simplified Adaptive
Multiplicative Masking for AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and
Christof Paar, editors, Proceedings of CHES 2002, volume 2523 of Lecture Notes
in Computer Science, pages 187–197. Springer-Verlag, 2002.

[WG04] Guido Walz and Barbara Grabowski, editors. Lexikon der Statistik: mit aus-
führlichem Anwendungsteil (German Edition). Spektrum Akademischer Verlag,
first edition, June 2004.

[WOL02] J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC Implementation of the
AES S-Boxes. In Proceedings of CT-RSA 2002, volume 2271 of Lecture Notes in
Computer Science, pages 67–78. Springer-Verlag, 2002.

