
Fault Attacks on RSA with CRT: Concrete
Results and Practical Countermeasures

C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert

Infineon Technologies
Security & ChipCard ICs

D-81609 Munich
Germany

{christian.aumueller, peter.bier, wieland.fischer, peter.hofreiter,
jean-pierre.seifert}@infineon.com

Abstract. This article describes concrete results and practically vali-
dated countermeasures concerning differential fault attacks on RSA using
the CRT. We investigate smartcards with an RSA coprocessor where any
hardware countermeasures to defeat fault attacks have been switched off.
This scenario was chosen in order to analyze the reliability of software
countermeasures.
We start by describing our laboratory setting for the attacks. Hereafter,
we describe the experiments and results of a straightforward implemen-
tation of a well-known countermeasure. This implementation turned out
to be not sufficient. With the data obtained by these experiments we
developed a practical error model. This enabled us to specify enhanced
software countermeasures for which we were not able to produce any
successful attacks on the investigated chips.
Nevertheless, we are convinced that only sophisticated hardware
countermeasures (sensors, filters, etc.) in combination with software
countermeasures will be able to provide security.

Keywords: Bellcore attack, Chinese Remainder Theorem, Fault attacks,
Hardware security, RSA, Spike attacks, Software countermeasures, Tran-
sient fault model.

1 Introduction

This paper shows and proves that fault attacks on RSA with the CRT (also
known as Bellcore attacks) due to [BDL] are feasible. They are indeed devas-
tating if there are neither hardware mechanisms (sensors, filters, etc.) nor any
appropriate software countermeasures implemented in the underlying smartcard
ICs. However, this does not imply that modern high-security smartcard ICs are
vulnerable to this kind of attacks. Instead, it shows that fault tolerance and
especially sophisticated hardware countermeasures are essential for the design
of secure hardware. Moreover, we stress that it is very difficult in the field to
switch off these sophisticated hardware countermeasures. This has been done

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 260–275, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Fault Attacks on RSA with CRT 261

exceptionally for our study concerning software countermeasures against the
Bellcore attack.

In order to provide better security for data protection under strong encryp-
tion more and more implementations on tamper-proof devices (e.g., smartcard
ICs) are proposed. The main reason is that smartcard ICs provide high reliability
and security with more memory capacity and better performance characteristics
than conventional magnetic stripe cards. With special characteristics of compu-
tational ability a large variety of cryptographic applications benefit from smart-
card ICs. This attracted a huge amount of research on physical attacks against
smartcards in 1996 due to [Koch], [BDL] and again 1999 by [KJJ], followed by
[GMO,SQ]. However, most research so far focused on Timing or Power Analysis
attacks. This is surprising as the frauds with smartcards by inducing faults are
reality, cf., [A,AK1,AK2], whereas no frauds via Timing or Power Analysis at-
tacks have been reported so far. Moreover, research on fault-based cryptanalysis
is not very active compared to the other side-channel attacks. Furthermore, no
practical investigation of the Bellcore attack is presently known. Indeed, this
topic will be publicly addressed within this paper for the first time. It answers
a question of Kaliski and Robshaw [KR] of how practical these attacks might
be, answered definitely here by physicists, designers and manufactures of secure
hardware.

The present paper is organized as follows: Section 2 briefly repeats RSA us-
ing the CRT and its fault-based cryptanalysis according to [BDL,JLQ]; it also
includes and discusses the advantages and limitations of so far publicly known
software countermeasures to defeat fault attacks on RSA in CRT mode. Section
3 firstly explains so-called spike attacks and their realization on smartcard ICs,
their complexity from an attacker’s point of view and reveals an appropriate
test equipment to implement fault attacks. Secondly, we will present the result-
ing errors on unprotected hardware and software for RSA in CRT mode. This
demonstrates the insufficiency of a straightforward implementation of a well-
known countermeasure due to [Sh]. Within section 4 we basically investigate
enhanced software countermeasures derived from our practical observations and
our proposed model to counteract fault attacks on RSA. Eventually, section 5
adds some practical conclusions concerning software countermeasures to prevent
Bellcore attacks.

2 Preliminaries

2.1 The RSA System

Let N = p · q be the product of two large primes of similar length. To sign a
message m ∈ ZN using RSA one computes S := md mod N , where d is the
private exponent satisfying e · d ≡ 1 mod (p − 1)(q − 1) for the public exponent
e. The computationally expensive part of signing is the modular exponentia-
tion. For better efficiency most implementations exponentiate as follows: using
repeated square and multiply they first compute Sp := md mod p and hereafter
Sq := md mod q. Then they construct the signature S = md mod N using the

262 C. Aumüller et al.

CRT. This last step takes negligible time compared to the two exponentiations.
It is done efficiently by computing

S = Sq +
(
(Sp − Sq) ∗ (q−1 mod p) mod p

) ∗ q, (1)

using Garner’s algorithm, cf. [Kn].
The exponentiation using the CRT is much faster than the full exponenti-

ation. To see this, observe that Sp = md mod p = mdmod(p−1) mod p. Usually,
d is of order N , while d mod (p − 1) is of order p. Consequently, computing Sp

requires half as many multiplications as computing S directly. In addition, in-
termediate values during the computation of Sp are only half as big — they are
in the range [1, . . . , p], rather than [1, . . . , N]. Clearly, the same arguments are
valid for the computation of Sq. When quadratic time complexity is used, multi-
plying two numbers in Zp takes a quarter of the time as multiplying elements in
ZN . Hence, computing Sp takes an eighth of the time of computing S directly.
Thus, computing Sp and Sq this way takes a quarter of the time of computing
S directly. Thus, CRT exponentiation is four times faster than direct exponen-
tiation. This is the reason for using the CRT for RSA signature generation, cf.
[CQ,MvOV].

2.2 The Fault-Based Cryptanalysis of RSA Using CRT

We briefly recall the fault-based cryptanalysis of RSA with the CRT due to
[BDL,JLQ]. Assume that during the computation of an RSA signature for a
message m a random error occurs during the computation of Sp. This yields a
faulty signature part S′

p, whereas the computation of Sq is done correctly. The
combination of S′

p and Sq via (1) will yield an incorrect signature S′. For S′

it holds that S − S′ �= 0 but S − S′ ≡ 0 mod q. Therefore, one obtains the
factorization of N by computing

gcd ((m − (S′)e) mod N, N) = q.

2.3 Simple Software Countermeasure to Defeat the Fault Attack

Some simple ad-hoc countermeasures have been already suggested within [BDL,
KR]. One approach is to perform calculations twice and the other approach
suggests to verify the correctness of the signature by comparing the inverse result
with the input. The first approach is very time-consuming and it cannot always
provide a satisfactory solution because a permanent error may be undetectable
by computing the function more than once. The second approach is to verify
the correctness by comparing the inverse result with the input m. Generally,
this is not a satisfactory solution since the parameter e could be a large integer
and this checking procedure becomes time-consuming. Additionally, for a real
life software implementation the programmer cannot rely on the fact that e is
known and a small number. On the other hand, this countermeasure seems to
be the safest.

Fault Attacks on RSA with CRT 263

An interesting countermeasure is the introduction of randomness into the
RSA signature process. Here, RSA is applied to F (m, r) where F is some for-
matting function and r is a random string which ensures that the user never signs
the same message twice and the attacker does not know the signed message, cf.
[BDL,BR,KR]. Other countermeasures are mentioned in [Ro].

2.4 Shamir’s Software Countermeasure

Shamir’s idea, cf. [Sh], is to select a random integer t and to do the following
computations

Spt := md mod p ∗ t,
Sqt := md mod q ∗ t.

In the case of Spt = Sqt mod t the computation is defined to be error free and S
is computed according to the CRT recombination equation (1).

One drawback in Shamir’s method, as pointed out in [JPY], is the following:
Within the CRT mode of real RSA applications the value d is not known, only
the values dp = d mod (p − 1) and dq = d mod (q − 1) are known. Although d
can be efficiently computed from dp and dq only, as described in [FS], it will
limit the acceptance of Shamir’s method. Moreover, his check will be shown to
be insufficient anyway. But, our enhanced software countermeasures will resolve
the above critical points of his method.

2.5 General Remarks on Methods to Overcome Fault Attacks

Only very recently the field of research on fault attacks countermeasures has
been emerged. For instance a series of papers [YJ,YKLM1,YKLM2,JQYY] as-
sume that the attacker has a very precise knowledge about the implementation
details and especially an absolute accurate control of the timing of his fault
induction. Under this strong assumption the private exponent d can be recon-
structed by abusing the implemented correctness check as an oracle for the bits
of d. However, all the described fault attacks can easily be prevented by various
randomization techniques for the RSA algorithm. In a side-channel secure RSA
signature implementation such techniques are present.

Moreover, [YKLM1] proposed the following very interesting countermeasure:
Their key idea is to influence the computation of Sq or the overall computation
of S when an error occurred during the computation of Sp, or vice versa. The
cryptanalysis given in section 2 shows that a successful fault attack is not possible
anymore. Unfortunately it was recently shown by [BMS] that their proposal for
a so-called infective RSA CRT computation is not secure.

3 Physical Fault Attacks Realization

First of all, we would like to stress again that modern high-end cryptographic de-
vices, e.g., smartcards, are usually protected by means of various and numerous

264 C. Aumüller et al.

sophisticated hardware mechanisms to detect any intrusion attempt into their
system behavior, cf. [Ma,NR]. This is due to the fact that hardware manufac-
turers of cryptographic devices such as smartcard ICs have been aware of the
importance of protecting against intrusions by, e.g., external voltage variations,
external clock variations, etc. for a long time. However, it should be clear that
the design of such mechanisms is a very difficult engineering task. Such mech-
anisms should be able to tolerate slight natural deviations from the standard
values of the electrical parameter to be safeguarded. This is necessary to ensure
a proper functionality of the underlying device within the specified range, as for
example described in [ISO]. On the other hand they also have to detect very fast
and unnatural low deviations from the specified standard range. This condition
is necessary to detect any attack attempt by modifying the electrical execution
conditions to alter a computation’s result. For example, the standard specifica-
tion [ISO] allows for the smartcard IC’s contact VCC under normal operating
conditions a voltage supply between 4, 5V and 5, 5V.

Although there are lots of possibilities to introduce an error during the cryp-
tographic operation of an unprotected smartcard hardware, we will only explain
in detail the so-called spike attacks. The reason is that spike attacks are non
invasive attacks. Thus, they require no physical opening and no chemical prepa-
ration of the smartcard IC. For further information on various methods how
to enforce erroneous computations of chips we refer to [A,AK1,AK2,Gu1,Gu2,
Koca,Ma].

3.1 Spikes

A smartcard of voltage class type A should be able to tolerate on the contact VCC

a supply voltage between 4, 5V and 5, 5V, where the standard voltage is specified
at 5V. Within this range the smartcard will be able to work properly. However,
a deviation of the external power supply of much more than the specified 10%
tolerance could cause problems with the smartcard IC. Indeed, it could then
lead to a wrong computation result, provided that the smartcard IC is still able
to finish its computation completely. But most often this is not possible, as the
spike causes too much trouble to the CPU of the smartcard IC. Although a spike
with the explanation above seems very simple, a specific type of a power spike
is determined by nine parameters. Using picture 1 we will explain them:

1. Initial value of the power supply V2.
2. Starting point t1 of the spike.
3. Rise time t2 − t1 of the spike.
4. Shape of the rising transition.
5. Height V3 − V1 of the power spike.
6. Length of the power spike t3 − t2.
7. Falling time t4 − t3 of the spike.
8. Shape of the falling transition.
9. Final value V1 of the power supply.

Fault Attacks on RSA with CRT 265

voltage

 t 1 t 2 t 3 t 4 time

V3

V2

V1

Fig. 1. Spike-parameters defining the shape of a specific spike.

This indicates the huge range of different parameters which must be scanned
for penetration attacks against cryptographic devices. On the other hand, it also
reveals the strong demands on the corresponding sensor and filter mechanisms.
From the former discussion of spike attacks, one can envision the difficulties
an attacker is confronted with, when he wants to overcome all the activated
hardware countermeasures within modern high-security smartcard ICs.

3.2 Laboratory Setting

In order to systematically investigate the effects of spikes and especially our pro-
posed countermeasures, we basically used the following spike enforcing hardware
set-up, which is shown in figure 2.

PC
1234

ch
ip

 c
ar

d
ICcontrol/

communication

spike

spike generator

trigger

Fig. 2. Diagram of our test equipment.

With such a test set-up it is indeed possible to enforce a spike with a very
high accuracy. This is necessary, if the spike shall just only enforce a tiny ran-

266 C. Aumüller et al.

dom computation fault rather than a complete destruction of the smartcard’s
computation, which would make the smartcard’s computation result unusable
for a successful attack. Through the coupling of the control and communica-
tion of the smartcard with a PC, which is running a dedicated test-software,
it is possible to observe and analyze the smartcard’s reaction with respect to
the applied spike-form as discussed above, e.g., answering with a correct/wrong
answer sequence. Furthermore, the PC is responsible for the stimuli, timing and
controlling of the above spike parameters. Coupled with an interface card, the
spike generator is triggered by the PC which provides the time and voltage in-
formation for the specific spike to be applied to the card. The spike generator is
directly connected to the power supply VCC of the smartcard and provides its IC
with the necessary operating voltage including the voltage drop of the spike. By
means of the synchronization of the PC, the spike generator and the chipcard
itself a very high attack reproducibility of more than 90% can be achieved.

Now, one has to find parameters for such a spike which enables a tiny random
computation fault, but leaves the main computation untouched.

3.3 Results on Unprotected Hardware and Software

We will now discuss our results of successfully applied spike-attacks on unpro-
tected smartcards, i.e., ICs where any hardware countermeasures against fault
attacks have been switched off. Moreover, we have also switched off any (hard-
ware and software) countermeasures against other classical side-channel attacks,
like Timing Analysis [Koch], Power Analysis [KJJ], Electromagnetic Analysis
[SQ,GMO], etc.

However, to introduce a spike at the right position of the RSA with the CRT,
one should investigate the power profile of the critical computation first. Such a
power profile of our investigated smartcard equipped with an RSA coprocessor
is shown in figure 3. Let us explain this power profile a little bit more: The upper
line represents the profile of the smartcard’s I/O behavior. The first I/O activity
is the start impulse for the smartcard and the second peak is the answer sequence
given by the smartcard. Between these two peaks the smartcard is computing a
2048-bit RSA signature using the CRT. This is shown in the lower line where
the main power profile of the smartcard is depicted.

The RSA-CRT computation starts at the time block 1.5 and ends at the
time block 9.2. In the figure the blocks are numbered from 0 to 9. This is shown
by the fact that the power consumption increases — due to the coprocessors
activity. One immediately recognizes the two different exponentiations as they
are the main power consumers.

In our case the first exponentiation lies in the time frame 1.6 to 5.1, and the
second exponentiation lies in the time frame 5.3 to 8.8. Before the first exponen-
tiation one recognizes the loading of the data into the crypto coprocessor for the
first exponentiation, after the first exponentiation the corresponding correctness
checks and as well the loading of the data into the crypto coprocessor and for the
second exponentiation and after the second exponentiation again the correctness
checks of the second exponentiation. Finally, one sees the CRT combination of

Fault Attacks on RSA with CRT 267

the two partial exponentiations followed eventually by an additional correctness
check for the CRT combination.

Fig. 3. Power profile of RSA with the CRT.

Results on completely unprotected RSA using the CRT. The first al-
gorithm we attacked with our spike equipment was the pure RSA signature
algorithm using the CRT:

input: m, p, q, dp, dq, q
−1 mod p

Sp := mdp mod p
Sq := mdq mod q
S := Sq + ((Sp − Sq) ∗ q−1 mod p) ∗ q
return(S)

output: md mod N

Before discussing the results of our spike attacks on the above algorithm,
we note that the inputs p, q, dp, dq, q

−1 mod p are usually stored in EEPROM,
while the message m is stored in RAM. However, in order to work with the data

268 C. Aumüller et al.

p, q, dp, dq, q
−1 mod p they must be moved from EEPROM into RAM or the

crypto coprocessor. By varying the time when we applied the appropriate spike
to the smartcard IC’s power supply VCC , we were able to induce the following
different errors:

Observed error Mainly due to
modification of p, q Moving data from E2 to coprocessor
modification of dp, dq Handling data within CPU
wrong exponentiation modp, q Error within CPU or coprocessor
modification of q−1 mod p Moving data from E2 to coprocessor
wrong combination of Sp and Sq All listed errors
faulty signature modp and modq Moving data from coprocessor
wrong answer of smartcard Fatal error within CPU

Note that the first five errors may lead to a successful attack, whereas the
last two do not. Thus, we can conclude that it is absolutely necessary to have
sophisticated hardware and software countermeasures to avoid such kinds of
attacks. Within the remaining sections we will analyze already existing software
countermeasures and also develop new and more reliable countermeasures.

Results on unprotected hardware with simple software countermea-
sures. Motivated by the devastating results obtained within the previous sec-
tion, we hereafter tested the reliability of the naively implemented software coun-
termeasures due to [Sh] as desribed in section 2. Thus, we applied spikes to the
unprotected smartcard while computing the following RSA signature algorithm
shown in figure 4.

Again, we firstly summarize some of the observed errors.

Observed error scenarios A B C
1 modification of p′, q′ time dep. time dep. no
2 modification of d time dep. time dep. yes
3 modification of d′

p, d
′
q yes yes yes

4 modification of r time dep. time dep. yes
5 wrong exponentiation modp, q prob. 1 − 1/r yes yes
6 modification of Sp or Sq time dep. yes no
7 modification of q−1 mod p no yes no
8 error during comb. of Sp and Sq no yes no
9 faulty signature modp and modq no no yes

The above table is organized as follows. The second column denotes the kind
of error which might occur. Column A indicates whether the countermeasure rec-
ognizes the induced fault, column B indicates whether the corresponding faulty
signature S reveals the secret key and column C says whether the countermea-
sure is correctly working in the corresponding case. We will briefly comment the
observed errors row by row:

Fault Attacks on RSA with CRT 269

input: m, p, q, d, q−1 mod p

randomly choose a short prime r of, e.g., 32 bits
p′ := p ∗ r
d′

p := d mod ((p − 1) ∗ (r − 1))
q′ := q ∗ r
d′

q := d mod ((q − 1) ∗ (r − 1))

S′
p := (m mod p′)d′

p mod p′

S′
q := (m mod q′)d′

q mod q′

Sp := S′
p mod p

Sq := S′
q mod q

S := Sq + ((Sp − Sq) ∗ q−1 mod p) ∗ q

if ((S′
p mod r) �= (S′

q mod r)) then
return(error)

else
return(S)

output: S = md mod (p ∗ q)

Fig. 4. Shamir’s countermeasure.

1. During the computation of p′ the value of p may be changed to some value p̃,
such that p′ = p̃r. Then S′

p is computed correctly modulo r, but not modulo
p. If p′ is destroyed later, then the check reveals the attack. If a destroyed p̃
will be used for the computation of d′

p then the check will not recognize this
relevant fault.

2. If d is changed before the first two reductions this will not be detected but
is not security relevant. If d is changed between the first two reductions, this
will be recognized by the check.

3. If d′
p or d′

q is destroyed the check will detect this modification.
4. Depending on the time r is destroyed, various things can happen: either the

errors will be recognized or they are not security relevant.
5. The destruction of one of the two exponentiations is the classical Bellcore

attack. This will be recognized.
6. If Sp will be changed before the combination to S then the check will fail.
7. If q−1 mod p will be changed then the faulty signature will reveal the key.

The check will not recognize the attack.
8. Cf. last row.
9. If the correct signature is destroyed S reveals no information about the key.

270 C. Aumüller et al.

4 Practical Fault Attacks Countermeasures for
Unprotected Hardware

Within this section we will use the formerly discussed errors to propose a simple
practical error model. Hereafter, we propose enhanced countermeasures.

RSA dp, pt

RSA dq, qt

RSA d, p

RSA d, q

m

p

q

d (p)

d (q)

check

sp

sq

Combine

p q p-1

s

p * p -1 = 1 (q) ?

m

p

q

dp

dq

S'p

S'q

cross

check

mod p

mod q

sp

sq

Combine scheck

s

Fig. 5. Information flow during checking.

4.1 Model to Understand Resulting/Possible Faults

From the observed error scenario, we have learned by an extensive data analysis
the following facts:

Fault Attacks on RSA with CRT 271

– During the computation, every input value to the RSA signature algorithm
can be altered to a value different from the original value.

– During the computation, every variable can be changed.
– The instruction sent to the CPU or a peripheral can be changed.
– The only values to trust, are the values which are stored in ROM or EEP-

ROM.

Armed with this knowledge, we formulated the following checking philosophy:

Check (at least in a probabilistic sense) every computed intermediate result
with respect to its correctness by relying on trusted values only.

In a rough sense, this is reflected by figure 5. In this context we adapt the
transient fault model due to [BDL] which assumes that our power spikes intro-
duce arbitrary errors. Additionally, we assume that the attacker can induce only
one spike but at a specific time chosen by himself.

4.2 Software Countermeasures Derived According to the Model

Inspired by the previous section, we developed the following countermeasures
(shown in figure 6) to counteract fault attacks. It takes into account that in a
practical application only dp and dq are given. Also, it avoids the use of the
public exponent e, which in real applications is most often not known to the
signature software.

We will briefly comment on this algorithm. The check after the CRT com-
bination ensures that S is correctly computed from the data S′

p and S′
q. There-

fore, it remains to guarantee that the latter ones are correct. The central check
(Sdqt

pt ≡ S
dpt

qt mod t) proves that the two big exponentiations itself where pro-
cessed in a correct way — assuming that the inputs are not compromised. Note
that an erroneous pass of this check can only be due to some very subtle mod-
ifications of these input values. Such errors will be intercepted by the first two
checking blocks. Finally, we would like to point out the following important
advice for a careful implementation: for the two checking blocks the secret pa-
rameters dp and dq have to be reloaded from a secure area (EEPROM).

4.3 Measurement Results for Enhanced Software Countermeasures

By extensive penetration tests via spikes on the algorithm shown in figure 6 we
obtained the following table. It proves empirically the reliability of our software
countermeasures.

272 C. Aumüller et al.

input: m, p, q, dp, dq, q
−1 mod p

let t be a short prime number, e.g., 32 bits

p′ := p ∗ t
d′

p := dp + random1 ∗ (p − 1)
S′

p := md′
p mod p′

if ¬(p′ mod p ≡ 0 ∧ d′
p mod (p − 1) ≡ dp) then return(error)

q′ := q ∗ t
d′

q := dq + random2 ∗ (q − 1)
S′

q := md′
q mod q′

if ¬(q′ mod q ≡ 0 ∧ d′
q mod (q − 1) ≡ dq) then return(error)

Sp := S′
p mod p

Sq := S′
q mod q

S := Sq + ((Sp − Sq) ∗ q−1 mod p) ∗ q
if ¬((S − S′

p mod p ≡ 0) ∧ (S − S′
q mod q ≡ 0)) then return(error)

Spt := S′
p mod t

dpt := d′
p mod (t − 1)

Sqt := S′
q mod t

dqt := d′
q mod (t − 1)

if (Sdqt
pt ≡ S

dpt
qt mod t) then

return(S)
else

return(error)

output: md mod (p ∗ q)

Fig. 6. Practically secured RSA with CRT.

Observed error scenarios A B C
modification of p, p′, q, q′ yes yes yes
modification of d′

p, d
′
q yes yes yes

modification of t yes yes yes
wrong exp. modp, q prob. 1 − 1/t yes yes
modification of Sp or Sq yes yes yes
modification of q−1 mod p yes yes yes
error during comb. of Sp and Sq yes yes yes
faulty signature modp and modq prob. 1 − 1/t no yes

Clearly, the probability that an error is undetected is equal to 1/t. For t a
32-bit integer, this probability is small enough; t can thus be seen as a security
parameter.

Fault Attacks on RSA with CRT 273

5 Conclusion

We have shown that the classical Bellcore fault attack is in principal feasible
when using completely unprotected microcontrollers. Moreover, it also shows
that unskilled implementations of countermeasures are not always reliable. It
again answers a question of Kaliski and Robshaw [KR], and shows that these
attacks are indeed practical. Our investigation also reveals that one should test
any conceivable countermeasures in reality against all possible attack scenarios
before trusting them. This was especially done with our newly developed software
countermeasures.

Although our software countermeasure seems to be very promising, we are
strongly convinced that cryptographic hardware should never be used without
appropriate hardware countermeasures in combination with software counter-
measures. As a result, we finish with an advice given by Kaliski and Robshaw
[KR] from the RSA Laboratories stating that good engineering practices in the
design of secure hardware are essential.

References

[A] R. Anderson, Security Engineering, John Wiley & Sons, New York, 2001.
[AK1] R. Anderson, M. Kuhn, “Tamper Resistance – a cautionary note”, Proc.

of 2nd USENIX Workshop on Electronic Commerce, pp. 1–11, 1996.
[AK2] R. Anderson, M. Kuhn, “Low cost attacks attacks on tamper resistant

devices”, Proc. of 1997 Security Protocols Workshop, Springer LNCS
vol. 1361, pp. 125–136, 1997.

[BDL] D. Boneh, R. A. DeMillo, R. Lipton, “On the Importance of Eliminating
Errors in Cryptographic Computations” Journal of Cryptology 14(2):101–
120, 2001.

[BDHJ+] F. Bao, R. H. Deng, Y. Han, A. Jeng, A. D. Narasimbalu, T. Ngair, “Break-
ing public key cryptosystems on tamper resistant dives in the presence of
transient faults”, Proc. of 1997 Security Protocols Workshop, Springer
LNCS vol. 1361, pp. 115–124, 1997.

[BR] M. Bellare, P. Rogaway, “The exact security of digital signatures — how to
sign with RSA and Rabin”, Proc. of EUROCRYPTO ’96, Springer LNCS
vol. 1070, pp. 399–416, 1996.

[BS] E. Biham, A. Shamir, “Differential fault analysis of secret key cryptosys-
tems”, Proc. of CRYPTO ’97, Springer LNCS vol. 1294, pp. 513–525,
1997.

[BMM] I. Biehl, B. Meyer, V. Müller, “Differential fault attacks on elliptic curve
cryptosystems”, Proc. of CRYPTO ’00, Springer LNCS vol. 1880, pp. 131–
146, 2000.

[BMS] J. Blömer, A. May, J.-P. Seifert, personal communication, April 2002.
[CQ] C. Couvreur, J.-J. Quisquater, “Fast decipherment algorithm for RSA

public-key cryptosystem”, Electronics Letters 18(21):905–907, 1982.
[FS] W. Fischer, J.-P. Seifert, “Note on fast computation of secret RSA expo-

nents”, Proc. of ACISP ’02, Springer LNCS vol. 2384, pp. 136–143, 2002.
[GMO] K. Gandolfi, C. Mourtel, F. Olivier, “Electromagnetic analysis: Concrete

results”, Proc. of CHES ’01, Springer LNCS vol. 2162, pp. 255–265, 2001.

274 C. Aumüller et al.

[Gu1] P. Gutmann, “Secure deletion of data from magnetic and solid-state mem-
ory”, Proc. of 6th USENIX Security Symposium, pp. 77–89, 1997.

[Gu2] P. Gutmann, “Data Remanence in Semiconductor Devices”, Proc. of 7th
USENIX Security Symposium, 1998.

[HP1] H. Handschuh, P. Pailler, “Smart Card Crypto-Coprocessors for Public-
Key Cryptography”, CryptoBytes 4(1):6–11, 1998.

[HP2] H. Handschuh, P. Pailler, “Smart Card Crypto-Coprocessors for Public-
Key Cryptography”, Proc. of CARDIS ’98, Springer LNCS vol. 1820,
pp. 372–379, 1998.

[ISO] International Organization for Standardization, “ISO/IEC 7816-3: Elec-
tronic signals and transmission protocols”, http://www.iso.ch, 2002.

[JLQ] M. Joye, A. K. Lenstra, J.-J. Quisquater, “Chinese remaindering based
cryptosystem in the presence of faults”, Journal of Cryptology 12(4):241–
245, 1999.

[JPY] M. Joye, P. Pailler, S.-M. Yen, “Secure Evaluation of Modular Functions”,
Proc. of 2001 International Workshop on Cryptology and Network Secu-
rity, pp. 227–229, 2001.

[JQBD] M. Joye, J.-J. Quisquater, F. Bao, R. H. Deng, “RSA-type signatures in the
presence of transient faults”, Cryptography and Coding , Springer LNCS
vol. 1335, pp. 155–160, 1997.

[JQYY] M. Joye, J.-J. Quisquater, S. M. Yen, M. Yung, “Observability analysis —
detecting when improved cryptosystems fail”, Proc. of CT-RSA Confer-
ence 2002, Springer LNCS vol. 2271, pp. 17–29, 2002.

[KR] B. Kaliski, M. J. B. Robshaw, “Comments on some new attacks on cryp-
tographic devices”, RSA Laboratories Bulletin 5, July 1997.

[Kn] D. E. Knuth, The Art of Computer Programming, Vol.2: Seminumerical
Algorithms, 3rd ed., Addison-Wesley, Reading MA, 1999.

[Koca] O. Kocar, “Hardwaresicherheit von Mikrochips in Chipkarten”, Daten-
schutz und Datensicherheit 20(7):421–424, 1996.

[Koch] P. Kocher, “Timing attacks on implementations of Diffie-Hellmann, RSA,
DSS and other systems”, Proc. of CYRPTO ’97, Springer LNCS vol. 1109,
pp. 104–113, 1997.

[KJJ] P. Kocher, J. Jaffe, J. Jun, “Differential Power Analysis”, Proc. of
CYRPTO ’99, Springer LNCS vol. 1666, pp. 388–397, 1999.

[Ma] D. P. Maher, “Fault induction attacks, tamper resistance, and hostile
reverse engineering in perspective”, Proc. of Financial Cryptography,
Springer LNCS vol. 1318, pp. 109–121, 1997.

[MvOV] A. J. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, New York, 1997.

[NR] D. Naccache, D. M’Raihi, “Cryptographic smart cards”, IEEE Micro,
pp. 14–24, 1996.

[Pe] I. Petersen, “Chinks in digital armor — Exploiting faults to break smart-
card cryptosystems”, Science News 151(5):78–79, 1997.

[Ro] T. Rosa, “Future Cryptography: Standards are not enough”, Proc. of Se-
curity and Protection of Information 2001, pp. 237–245, 2001.

[RSA] R. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital sig-
natures and public-key cryptosystems”, Comm. of the ACM 21:120–126,
1978.

[SQ] D. Samyde, J.-J. Quisquater, “ElectroMagnetic Analysis (EMA): Measures
and Countermeasures for Smart Cards”, Proc. of Int. Conf. on Research in
Smart Cards, E-Smart 2001, Springer LNCS vol. 2140, pp. 200–210, 2001.

Fault Attacks on RSA with CRT 275

[Sh] A. Shamir, “Method and Apparatus for protecting public key schemes
from timing and fault attacks”, U.S. Patent Number 5,991,415, November
1999; also presented at the rump session of EUROCRYPT’97.

[YJ] S.-M. Yen, M. Joye, “Checking before output may not be enough against
fault-based cryptanalysis”, IEEE Trans. on Computers 49:967–970, 2000.

[YKLM1] S.-M. Yen, S.-J. Kim, S.-G. Lim, S.-J. Moon, “RSA Speedup with Residue
Number System immune from Hardware fault cryptanalysis”, Proc. of the
ICISC 2001, Springer LNCS vol. 2288, pp. 397–413, 2001.

[YKLM2] S.-M. Yen, S.-J. Kim, S.-G. Lim, S.-J. Moon, “A countermeasure against
one physical cryptanalysis may benefit another attack”, Proc. of the ICISC
2001, Springer LNCS vol. 2288, pp. 414–427, 2001.

[ZM] Y. Zheng, T. Matsumoto, “Breaking real-world implementations of cryp-
tosystems by manipulating their random number generation”, Proc. of the
1997 Symposium on Cryptography and Information Security, 1997.

	Introduction
	Preliminaries
	The RSA System
	The Fault-Based Cryptanalysis of RSA Using CRT
	Simple Software Countermeasure to Defeat the Fault Attack
	Shamir's Software Countermeasure
	General Remarks on Methods to Overcome Fault Attacks

	Physical Fault Attacks Realization
	Spikes
	Laboratory Setting
	Results on Unprotected Hardware and Software

	Practical Fault Attacks Countermeasures for Unprotected Hardware
	Model to Understand Resulting/Possible Faults
	Software Countermeasures Derived According to the Model
	Measurement Results for Enhanced Software Countermeasures

	Conclusion

