
USENIX Association 	 17th USENIX Security Symposium	 75

Unidirectional Key Distribution Across Time and Space
with Applications to RFID Security

Ari Juels
RSA Laboratories
Bedford, MA, USA
ajuels@rsa.com

Ravikanth Pappu
ThingMagic Inc

Cambridge, MA, USA
ravi.pappu@thingmagic.com

Bryan Parno
Carnegie Mellon University

Pittsburgh, PA, USA
parno@cmu.edu

Abstract

We explore the problem of secret-key distribution in
unidirectional channels, those in which a sender transmits
information blindly to a receiver. We consider two ap-
proaches: (1) Key sharing across space, i.e., via simultane-
ously emitted values that may follow different data paths
and (2) Key sharing across time, i.e., in temporally stag-
gered emissions. Our constructions are of general inter-
est, treating, for instance, the basic problem of construct-
ing highly compact secret shares. Our main motivating
problem, however, is practical key management in RFID
(Radio-Frequency IDentification) systems. We describe
the application of our techniques to RFID-enabled supply
chains and a prototype privacy-enhancing system.

1 Introduction

Key management is a cornerstone of cryptography, but
also its major deployment challenge. Textbook crypto-
graphic protocols often presuppose keys held by a pair of
principals anecdotally dubbed Alice and Bob. From birth,
Alice and Bob are presumed to share a password, a secret
key, or the public key of some mutually trusted entity.

In practice, the conceptually simple goals of key
distribution—even between two parties—are fraught with
complexity. Disparate naming conventions and require-
ments for key revocation and recovery have hobbled many
public-key infrastructures. Password management re-
mains a widespread challenge thanks to obstacles as var-
ied as limited human memory, caps-lock keys, and social-
engineering attacks such as phishing.

Ultimately, key distribution must rely on secure chan-
nels established through pre-existing trust relationships or
special physical considerations. For example, browser
software shipped with new computing systems carries the
root public keys of a number of certificate authorities. Spe-

cial physical assumptions and adversarial constraints can
shape the problem of key distribution in interesting ways.
Researchers have explored various physical models to sup-
port key establishment between pairs of devices, including
optical channels [16,24], distance-bounding [30] based on
signal velocity, and physical contact [33]. Such models
treat a variety of adversarial capabilities. For instance,
privacy amplification [3], which strengthens keys using
shared sources of noise or quantum phenomena, appeals
to bounds on adversarial data access or storage.

In this paper, we focus on the problem of key distri-
bution between two parties communicating via a unidi-
rectional channel. This special constraint means that one
party (Alice) acts exclusively as a sender, while the other
(Bob) acts exclusively as a receiver. We consider the chal-
lenge of unidirectional key transport when Alice and Bob
have no pre-existing relationship, but share a channel with
limited adversarial access. We believe that such special
unidirectional models have broad applicability, as they re-
flect the natural broadcast characteristics of many media.
The starting point and motivation for our investigation,
though, is the specific, real-world problem of key trans-
port in RFID-enabled supply chains.

Organization In Section 2, we give details on the RFID
challenges motivating our work. We provide an overview
of our technical contributions in Section 3 and review re-
lated work in Section 4. In Section 5, we present what we
call secret sharing in space, a key-distribution system that
supports privacy protection in RFID applications. We also
briefly describe a prototype RFID implementation of se-
cret sharing in space. In Section 6, we present secret shar-
ing in time, a separate body of techniques applicable to
RFID access-control and authentication, and also of broad
interest for key distribution in unidirectional channels. We
conclude in Section 7 with a brief discussion of future re-
search directions.



76	 17th USENIX Security Symposium	 USENIX Association

2 Motivation: The RFID Landscape

The ratio of terrestrial radio and cellular telephone sys-
tems to the number of humans on earth is approaching
unity, and in the past decade, a completely different kind
of radio device has emerged and is poised to eclipse this
ratio by three orders of magnitude. Rapid advances in
CMOS technology have enabled the production of low-
cost tags that are capable of reporting their identity over
a wireless link. These tags—usually costing tens of cents
and carrying a few thousand gates of silicon—have little
if any general-purpose computing power beyond what is
needed to respond to commands from an interrogator or
reader. This asymmetry between interrogators and tags
is further amplified by the fact that, in many applications,
tags are passive, lacking an on-board source of power; in-
stead, they harvest power from the electric, magnetic or
electromagnetic field generated by the interrogators.

Recent developments in passive Radio Frequency IDen-
tification (RFID) technology and corresponding interna-
tional standards [12] have spurred deployment in appli-
cations ranging from supply-chain and inventory manage-
ment of consumer goods, to tracking medical equipment
in hospitals, to counting poker chips on gaming tables.

The heir apparent to the optical barcode, RFID is be-
coming a prevalent technology in supply-chain manage-
ment. Ultimately, manufacturers and retailers envisage
RFID tagging of individual consumer items. Today, tag-
ging is most common at the granularity of cases, which
contain consumer items, and of pallets, which carry cases.
In this paper, we use the term “case” as the generic term
for a discrete collection of goods.

For supply-chain operations, the predominant RFID
standard is one known as the Electronic Product Code
(EPC) (in particular, Class-1 Gen-2 EPC, hereafter re-
ferred to as Gen2). EPC tags act effectively as wireless
barcodes, emitting short strings of information known as
EPC codes. An EPC code has four basic components: (1)
A header, which denotes the EPC version number; (2) A
domain manager, which typically specifies the manufac-
turer or creator of the item; (3) An object class, which
specifies the item type, and (4) a serial number, a unique
identifier for the item. This license plate approach asso-
ciates an arbitrary amount of metadata with the tagged ob-
ject while requiring little memory on the tag itself.

2.1 Security and Key Distribution in Gen2

Two features in the Gen2 standard require secret keys:
Locking and perma-locking: It is possible to lock part
(or all) of the tag’s memory, either temporarily under a
32-bit password, or permanently with no possibility of un-
locking and rewriting the memory. While this feature pre-
vents unauthorized entities from tampering with the con-
tents of tag memory, it does not prevent unauthorized read-
ers from reading the contents.

The kill command: The only security function that com-
pletely disables tags is a command known as kill. When
transmitted by a reader along with a tag-specific kill PIN
(32 bits long in Gen2), the kill command causes a tag to
disable itself permanently.

The EPC kill function is envisaged as a privacy-
enhancing feature for retail environments with item-level
tagging. EPC tags specify the items to which they are af-
fixed. Thus a consumer carrying EPC-tagged items would
in principle be subject to clandestine inventorying attacks
that disclose sensitive data about medications, reading ma-
terials, luxury goods, and so forth. By deploying the
kill function at the point of sale, a retail shop can pro-
tect against such privacy infringements by disabling tags.
Additionally, researchers have proposed anti-cloning tech-
niques that co-opt the kill and write-access commands in
EPC to support reader authentication of tags and to protect
PINs from untrusted readers [15].

Both locking and killing pose a significant implementa-
tion hurdle: They require a solution to the key-distribution
problem. The initialization of tag-specific kill PINs in
tags and the secure propagation of these PINs to point-of-
sale devices are formidable operational challenges. Sup-
ply chains include entities with widely disparate data-
processing capabilities. Information transfer across orga-
nizational boundaries, moreover, introduces a host of reg-
ulatory and technical burdens. Hence supply-chain entities
commonly lack data-network mechanisms for timely, reli-
able, and secure transport of PINs. While it might seem a
straightforward matter for Alice (a manufacturer) to share
EPC PINs with Bob (a retailer) through a data network, in
practice it is often quite difficult. Indeed, with all of the in-
termediaries through which manufactured goods regularly
pass, Alice may even ship cases without knowing that Bob
is the ultimate receiver.

In this paper, we show that RFID-enabled supply chains
possess unique properties that allow us to:

• Provide consumer privacy with respect to unautho-
rized scanning of tagged objects;

• Provide a robust protocol-independent mechanism to
distribute PINs and passwords without requiring a
network connection, changes to the air interface pro-
tocol, or changes to the tag hardware.

The only resource our method requires is memory on
the tag, and we provide a means to trade-off memory usage
against security.

2.2 Object Hierarchies in RFID-Enabled
Supply Chains

Our techniques for key distribution in RFID applications
rely in part on the fact that supply chains are hierarchical
in nature. To highlight the properties we utilize, we use
Figure 1 to trace the path of a single pack of razor-blades
in a consumer’s home back to the manufacturing facility.



USENIX Association 	 17th USENIX Security Symposium	 77

 














 


















Figure 1: Object hierarchies in RFID-enabled supply chains This schematic represents the path taken by an individual pack of
razor blades from the factory to the consumer’s home. Please refer to Section 2.2 for details.

Typically, items start off in large collections and pro-
gressively get whittled down into smaller aggregates
as they make their way from the factory to the store
shelf [13]. In the example above, razor blades are as-
sembled into a pallet containing 90 cases, each with 72
packs of blades. Assuming the items, cases, and pallet
are tagged, we have a total of 6571 tags on this partic-
ular pallet. The pallet is then transported, possibly with
many other pallets, to a distribution center (DC). The DC
de-palletizes the large pallet and assembles a mixed pallet
with a smaller quantity of cases that has been ordered by
the store. A typical number of cases from the original pal-
let that make it onto this new pallet is 10 [13]. Assuming
a new pallet tag is added, 730 of the 6571 original tags are
now available on the new pallet. This new pallet is then
transported to the store and stored in the backroom. Of
these 730 tags, typically up to two cases’ worth, or 144,
items are laid out on the store shelf for customers. From
this collection, consumers pick up a few packs and pur-
chase them. Therefore, the object hierarchy is as follows.

Razor blades: 6571 → 730 → 144 → 5
Similarly, for DVDs a typical object hierarchy is

DVDs: 5040 → 2520 → 400 → 24
where the last number represents an estimate of the num-
ber of DVDs from a case sold to an individual consumer.
Finally, for pharmaceuticals, we have

Pharmaceuticals: 7200 → 1920 → 150 → 6
where again the last number represents an estimate of the
maximum number of filled prescriptions from one case in
possession of a consumer at the same time.

While these numbers may vary between different types
of retailers and use cases, the important point to note is
that the number of tagged items starts off large and ends
up being small. Another important insight is that larger
numbers of tags are typically found in physically secure
areas, while smaller numbers of tags are found in physical

locations that are accessible to adversaries. We exploit the
fact that tags share the same space-time context earlier in
the supply chain, but this history is progressively lost as
tagged objects emerge from the supply chain into the front
of the retail store and thereon into the consumer’s home.

3 Our Contribution

The challenges of EPC PIN distribution motivate us to
consider a new approach, that of transporting secret keys
in RFID tags themselves. This approach allows a unidirec-
tional model of key transport. The sender (Alice) encodes
secrets across tags or cases. The receiver (Bob) recov-
ers these secrets without communicating with Alice—and,
potentially, without even knowing her identity.

To support this unidirectional model of key transport,
we propose protocols for dispersing keys or PINs across
tags by means of secret sharing. We consider two distinct
modes of secret sharing: (1) Secret sharing across space
and (2) Secret sharing across time.

Secret sharing across space: Alice can share a secret
key κ across a set of tags T = {τ1, . . . ,τn} in a case. To do
so, she transforms κ into a collection of shares S1, . . . ,Sn,
and stores Si on tag τi, such that κ can only be recovered by
scanning all n tags in the cases. (We later consider thresh-
old secret sharing, i.e., schemes such that k < n shares suf-
fice for recovery of κ.)

Such secret sharing across tags permits a new approach
to privacy enforcement for item-level tagging that largely
eliminates the need for killing tags. Suppose that mi con-
sists of the data, e.g., EPC code, associated with tag τi.
Suppose that Alice replaces mi with Eκ[mi] in all tags,
where Eκ represents symmetric-key encryption under κ.
Then the contents mi of any tag can only be deciphered by
scanning the full set of tags T .



78	 17th USENIX Security Symposium	 USENIX Association

On receiving a case from Alice, a retailer (Bob) can
recover κ and decrypt the EPC codes in its tags. Once
the items and their associated tags are dispersed by sale
to customers, however, a would-be eavesdropper has no
practical way to recover κ. We assume here that access to
tags is secured in the supply chain, i.e., the pre-sale envi-
ronment. We illustrate the principle by example.

Example 1 Alice ships a case containing three bottles
of medicine bearing RFID tags τ1,τ2 and τ3 with data
strings m1,m2, and m3. She generates a secret key κ
and transforms it into a triplet of shares (S1,S2,S3) via
a (3,3)-secret sharing scheme. Alice writes the value
vi = (Eκ[mi],Si) to tag τi.

Bob, a pharmacist, receives Alice’s case. He scans the
three tags, recovers κ and decrypts the data strings of the
tags in the cases, enabling him to read m1 = “High street-
value drug, 500 mg, 100 count, bottle #8278732,” as well
as m2 and m3. Bob dispenses the first bottle to Carol.

Later in the day, a drug thief surreptitiously scans
Carol’s RFID tags as she passes on the street. The thief
obtains the value v1 = (Eκ[m1],S1)—a ciphertext and key
share that by themselves carry no meaning and therefore
do not reveal the presence of high-value pharmaceuticals.

As this example illustrates, Bob does not have to per-
form any explicit action to protect his customers’ privacy.
He does not have to kill or rewrite tags. Secret sharing
across space enforces privacy implicitly through the phys-
ical dispersion of tags. Unlike killing, though, secret shar-
ing does not enforce privacy against tracking attacks. The
value v1 is itself a unique identifier that can serve to cor-
relate different instances of scanning of Carol’s tags and
potentially track Carol herself. This is a basic limitation
of our scheme, but one we consider to be of considerably
smaller importance than revelation of tag data contents.

Of course, it is possible to encode κ in a case-specific
tag, rather than across items within a case. The advan-
tage of sharing across space is twofold, though: (1) As we
show, it allows for robust secret recovery, i.e., recovery of
κ even in the face of scanning errors or lost data and (2) It
eliminates the need for an extra tag, i.e., one on each case.

Our main research challenge in applying secret sharing
across space to RFID is the development of schemes with
tiny secret shares. While the literature on computational
secret sharing considers shares of length equal to that of
a secret key, e.g., 128 bits, space constraints on EPC tags
urge even smaller share sizes, e.g., 16 bits.

In Example 1, the adversary (thief) is underinformed,
i.e., lacks the shares needed to recover κ. Another facet of
our research aims to create situations in which an adver-
sary is overinformed, having too many shares to identify
and extract tag keys. In Appendix A, we consider situa-
tions in which an adversary is overinformed when scan-
ning retail shelves where the contents and thus RFID tags
of many cases are mixed together.

Secret sharing across time: Suppose that κ is not an
encryption key, but a write-access key. In that case, the
ability to recover κ by scanning a case would enable a
malefactor with access to a single case at any point in the
supply chain to modify the data contents of tags. Similarly,
suppose that κ were a symmetric key used to authenticate
tags. Then simply by scanning a case, an adversary could
recover all of the key material required to clone the asso-
ciated tags.

For this reason, we consider another form of secret shar-
ing in which a secret key κ is distributed not across the
tags in a single case, but across multiple cases. Given that
cases—much like data packets—depart and arrive at stag-
gered times in a supply chain, we refer to this approach as
secret sharing across time.

Example 2 Alice, a manufacturer, is shipping cases of
RFID-tagged items to Bob. She would like to communi-
cate the write-access PINs for the tags in these cases to
Bob as securely as possible.

Suppose that Alice employs trucks that hold up to ten
cases. She might do as follows. She selects a window,
i.e., sequence, of eleven cases c j,c j+1, . . . ,c j+10 desig-
nated for delivery to Bob. She creates a master secret κ
from which it is possible to derive the write-access PIN for
any tag within the window of cases. She distributes κ into
eleven shares S1,S2, . . . ,S11 via an (11,11)-secret sharing
scheme, and writes share Sd to case c j+d−1. (She might
distribute the secret across tags on individual items, or on
a case-specific tag.)

An adversary that gains access to the contents of a small
collection of cases, or even an entire truckload, is unable
to reconstruct the secret κ or to obtain the write-access
PINs for the RFID tags. On the other hand, Bob can re-
construct κ once he receives the full sequence of eleven
constituent cases.

Of course, in practice it may be difficult for Alice to
identify a priori a window of cases that a legitimate re-
ceiver, Bob, will receive in its entirety, particularly if the
cases pass through intermediaries. Hence the main thrust
of our work here is the development of more flexible se-
cret sharing schemes. We propose what we call Sliding-
Window Information Secret-Sharing (SWISS) schemes,
constructions such that for a sequence c1,c2, . . . of cases,
Bob need only receive a minimal number k of cases in
any contiguous window of size n in order to reconstruct
the associated secret keys. SWISS schemes provide key
confidentiality against adversaries that intercept cases on
a sporadic basis.

As we explain, it is a straightforward matter to create a
SWISS scheme in which shares are linear in n, and thus
potentially large in practice. Our contribution is a SWISS
scheme whose shares are constant in size, i.e., have length
independent of k and n.



USENIX Association 	 17th USENIX Security Symposium	 79

4 Related Work

Since its invention in 1979 by Shamir [32] and indepen-
dently by Blakley [4], secret sharing has played a foun-
dational role in cryptography. However, our work differs
from previous work in two key aspects: the privacy goal
we adopt and the size of the shares employed.

The majority of secret sharing literature evaluates the
privacy of a secret-sharing scheme from an information-
theoretic perspective, seeking to create efficient schemes
for various access structures. In this regime, a perfect
secret-sharing (PSS) scheme is one in which an adversary
learns no information about the secret in an information-
theoretic sense (i.e., even if the adversary has unbounded
computational resources). Shamir’s scheme [32] qualifies
as a PSS scheme. Statistical secret-sharing (SSS) schemes,
such as Blakley’s [4], allow a small amount of information
leakage, in the information-theoretic sense.

A narrower literature concerns complexity (or com-
putational) theoretic secret-sharing (CSS), in which pri-
vacy depends on computational bounds on an adver-
sary. Krawczyk first introduced the notion of a CSS
scheme [20], and Bellare and Rogaway later refined and
formalized it [2]. Work in this area has focused on pri-
vacy based on all-or-nothing indistinguishability. In other
words, in Krawczyk’s construction, an adversary either
has no information about the secret or she has complete
information about it. In this work, we introduce construc-
tions that accommodate gradated key information. This
allows us to consider schemes in which the leakage of se-
cret information is proportional to and thus grows gradu-
ally with the number of revealed shares.

The other dimension in which this work differs from
previous work is the length of the shares involved. It is
well known that in any natural PSS scheme, the size of
every participant’s share must be at least that of the se-
cret itself [10, 18]. For specific access structures, stronger
lower-bounds have been shown [9].

Any scheme in which shares are shorter than the secret
is necessarily imperfect. Ogata and Kurosawa [26] give
information-theoretic lower bounds on share sizes in such
schemes. At a high level, they show that a share must
have length equal to at least that of the “gap” in knowl-
edge between sets of shares outside the permitted access
structures and the secret itself. More formally, suppose

that a secret x R← D is selected at random from distribution
D. Let x̂ denote a random variable for x and Ŝi one for
Si, i.e., the ith share generated by a natural secret-sharing
scheme. If Γ represents the set of access structures that
are allowed to recover the secret, then it is the case that
H(Ŝi) ≥ minγ�∈ΓH(x̂ |{Ŝi}i∈γ), where H(A |B) denotes the
entropy of A conditional on B.

In terms of concrete proposals, in the information-
theoretic literature, McEliece and Sarwate note that
Shamir’s scheme can be generalized as a Reed-Solomon

code, permitting a tradeoff between share size and secu-
rity [25]. Blakley and Meadows propose a class of ramp
secret sharing schemes [5] which define two thresholds.
Given t shares, it is easy to reconstruct the secret. Less
than t ′ shares reveals no information about the secret, and
given some number of shares y such that t ′ ≤ y < t, the
information gained about the secret is proportional to y−t ′

t−t ′ .
Larger “ramps” provide weaker security but allow a reduc-
tion in share size. In both of these proposals, the size of
the shares is dependent on the size of the secret.

By moving to the CSS realm, Krawczyk introduces a
scheme with “short” shares with lengths independent of
the secret’s size [20]. A cryptographic key is shared using
a PSS scheme, while the secret is encrypted using the key.
The resulting ciphertext is shared using an information-
dispersal algorithm, e.g., Rabin’s IDA [27]. A share then
consists of a cryptographic portion and a ciphertext por-
tion. The cryptographic portion is at least as long as a
cryptographic secret key plus a hash function image (thus,
in practice, at least 384 bits). We use a similar mechanism
to make the size of our shares independent of the secret,
but in lieu of PSS and IDA schemes, we employ error cor-
recting codes to reduce share sizes and add robustness.

We are aware of no investigation, however, of the partic-
ular problem of creating shares smaller than the short ones
introduced by Krawczyk, i.e,, shares potentially shorter
than a cryptographic secret key (perhaps 16 bits in length).
Here, we characterize such shares as tiny.

The omission from the literature of CSS schemes with
tiny shares appears to have two underlying causes. First,
short shares are compact enough for many applications.
Second, the literature is solidly anchored in PSS. Even
CSS schemes, such as that of Krawczyk, typically rely on
PSS as a primitive to share out cryptographic keys.

Secret-sharing in RFID: Langheinrich and Marti sug-
gest using secret sharing to conceal an RFID tag’s infor-
mation from adversaries with time-limited access to the
tag [21]. The tag’s information is split using Shamir’s
scheme [32], and the tag periodically emits a share. A
reader that probes the tag over the course of several min-
utes will receive enough shares to reconstruct the tag’s in-
formation, while a casual attacker who only obtains a few
emissions cannot reconstruct any tag information. Our
schemes, in contrast, spread shares across multiple tags
and consider sliding time windows with evolving secrets,
rather than a single fixed secret.

In other work, Langheinrich and Marti propose using
Shamir’s scheme to distribute an item’s ID over hundreds
of RFID tags integrated into the item’s material [22]. They
aim to enforce privacy by requiring a reader to access mul-
tiple tags. In contrast, we look to dispersion, rather than
aggregation, of tags, as a privacy-enforcing mechanism.
We also reduce the size of each share to well below the
size of standard Shamir shares.



80	 17th USENIX Security Symposium	 USENIX Association

5 Secret Sharing Across Space

Sharing a secret (e.g., a cryptographic key) across space in
an RFID application imposes severe limitations on the size
of each share. As discussed in Section 4, previous schemes
typically require 128 bits or more for each share, whereas
with RFID tags, we would like shares of 16 bits or less.
Hence in this section we provide a generic robust secret
sharing scheme that we refer to as a Tiny Secret Sharing
(TSS) scheme. We define our scheme in a general problem
framework based on adversarial games, describe a proto-
type implementation, and suggest parameters appropriate
for real-world deployment.

5.1 Preliminaries

Secret Sharing. We adhere closely to the notation
and definitions of Bellare and Rogaway [2]. An n-
party secret-sharing scheme is a pair of algorithms Π =
(Share,Recover) that operates over a message space X,
where:

• Share is a probabilistic algorithm that takes input x ∈
X and outputs the n-vector S R← Share(x), where Si ∈
{0,1}∗. On invalid input x̂ �∈ X, Share outputs an n-
vector of the special (“undefined”) symbol ⊥.

• Recover is a deterministic algorithm that takes in-
put S ∈ ({0,1}∗ S ♦)n, where ♦ represents a share
that has been erased (or is otherwise unavailable).
The output Recover(S) ∈ X

S ⊥, where ⊥ is a dis-
tinguished value indicating a recovery failure.

In our security definitions, we assume an honest dealer,
i.e., correct execution of Share (although the adversary
may choose the secret that is shared).

Adversaries. While secret sharing literature tradition-
ally defines goals with respect to access structures, we
predicate our definitions below on a class A of probabilis-
tic adversarial algorithms. We define the security of a TSS
scheme in terms of a particular class A . We can reconcile
our adversarial model with the traditional access-structure
view by restricting A to only adversaries A that respect a
particular access structure. For example, we might con-
sider only adversaries that compromise fewer than d legit-
imate shares for some d.

Error Correcting Codes. Our construction utilizes an
error-correcting code (ECC), a generalization of secret
sharing that we formally define as a pair of algorithms
Πecc = (Shareecc,Recoverecc). An (N,K,D)Q-ECC oper-
ates over an alphabet Σ of size |Σ| = Q. Shareecc maps
ΣK → ΣN such that the minimum Hamming distance in
symbols between (valid) output vectors is D. For such
a function Shareecc, there is a corresponding function
Recoverecc that recovers a message successfully given an

attacker that can corrupt up to D/2 players or erase the
shares of D−1 players—or some combination of the two,
depending on the specific ECC. (In some cases, correction
beyond the minimum distance is possible [28].)

5.2 Problem Definition

Informally, the adversary may attack either the privacy or
the robustness of the scheme or both. A privacy attacker
attempts to recover the secret x given some number of
shares. To break robustness, the adversary aims to cor-
rupt shares such that Recover fails to output x. We define
these security goals formally below and conclude with a
definition of a TSS scheme.

5.2.1 Privacy

We consider two subtypes of privacy attackers: an under-
informed adversary and an overinformed adversary. An
underinformed adversary can corrupt a limited number of
players, while an overinformed adversary can obtain all n
shares, but also receives a number of additional “shares”
that she cannot distinguish from the correct shares. Due to
lack of space, we relegate details on overinformed adver-
saries to Appendix A. (Briefly, an overinformed adversary
sees shares from multiple cases simultaneously, and can-
not feasibly extract secrets due to the hardness of decoding
given many “chaff” shares.)

Underinformed Attacks. Here, we consider an attacker
who obtains a limited number of legitimate shares (recall
Example 1). In this setting, Bellare and Rogaway define
privacy based on a notion of indistinguishability. Given
an n-party secret-sharing scheme (Π,X), they define the
oracle corrupt(S, i) as a function that returns Si. (“Corrup-
tion” in this setting—corresponding to compromise of a
share-holding player—results in disclosure, not change, of
a share.) Then the Bellare and Rogaway notion of privacy
is defined based on the experiment shown in Figure 2(a)

In the experiment, the adversary is asked to choose two
values to be shared. The experiment selects one of the se-
crets at random and generates a set of shares. The adver-
sary can then corrupt (or see the value of) individual shares
and must eventually produce a guess as to which secret
was shared. The corruptions and the guess may be based
on state generated during the “choose” phase. Using this
experiment, Bellare and Rogaway define A’s advantage as

Advind
A [Π,X]

△
=2Pr

�

Expind
A [Π,X] ⇒ 1

�

−1.

5.2.2 Robustness

We desire our scheme to allow a legitimate user to re-
cover the original secret, even if the adversary tampers
with some of the shares. To model a scheme’s resilience
to such an attack, we define a robustness experiment. In



USENIX Association 	 17th USENIX Security Symposium	 81

Experiment Expind
A [Π,X]

(x0,x1) ← A(“choose”);
b R←{0,1}; S R← Share(xb);
b′ ← Acorrupt(S,·)(“corrupt”);
output ‘1’ if b = b′, else ‘0’

(a) Privacy Experiment

Experiment Exprec
A [Π,X]

x ← A(“choose”);
S R← Share(x);
S′ ← Acorrupt(S,·)(“corrupt”);
x′ ← Recover({S′i}i∈Ŝ

S{Si}i�∈Ŝ);
output ‘1’ if x �= x′, else ‘0’

(b) Robustness Experiment

Figure 2: TSS Experiments. These experiments capture our notion of privacy and robustness for TSS schemes.

our robustness experiment, Share is invoked on a secret
x of the adversary’s choosing. The adversary then cor-
rupts a number of players and replaces their share val-
ues. Again, the adversary is allowed to maintain state
between the “choose” and the “corrupt” phases. The ad-
versary is successful if Recover fails to recover x given
the corrupted and uncorrupted shares as input. This ex-
periment is much like that for robustness in Bellare and
Rogaway, though their definition additionally includes the
technical requirement that the adversary identify an un-
corrupted player j. This is not necessary for our pur-
poses. We define the robustness experiment as shown in
Figure 2(b), letting Ŝ represent the indices of the shares
corrupted by the adversary. We define the advantage of A

as Advrec
A [Π,X]

△
=Pr[Exprec

A [Π,X] ⇒ 1].
It is also useful to consider a modified experiment

Exprec−or−detect that outputs ‘1’ if x �= x′ and x′ �=⊥, else
‘0.’ In other words, A is successful if it causes a recovery
failure that Recover does not detect. This is a weaker re-
quirement, of course, than that represented by Exprec, but
an important condition not explored by Bellare and Ro-
gaway. Given the above experiments, we define a TSS
scheme as follows.

5.2.3 TSS Definition

Definition 1 A (k,n)-TSS scheme is a pair (Π,X), such
that Π distributes n shares of a secret x ∈ X, of which any
set of k correct shares suffices to recover x. The security of
the scheme is characterized by an adversary class A and
the tuple: (qu,εu,qr,εr), where an underinformed attacker
A ∈ A making qu corrupt queries has Advind

A [Π,X] ≤ εu;
likewise, the pair (qr,εr) applies to robustness attackers.
(An extended definition can include overinformed attack-
ers as well; see Appendix A.)

5.3 Our Construction

Figure 3 illustrates a high-level schematic of our TSS
scheme. The ShareT SS algorithm accepts as input an
arbitrarily-sized secret x. It then generates a large ran-
dom pre-key κ̃. We apply a hash to reduce κ̃ to the size
of a cryptographic key κ. The hash function also con-

{0,1}Σ
K

ShareECC ShareECC

Hash Encrypt
(+auth)κ κ

X

X

S1 S2 S3

R

S
1

κ'
S

3

κ'S
2

κ' S
2

x'
S

3

x'
S

1

x'

∼

∼

Figure 3: Secret Sharing with Tiny Shares. Schematic of our
T SS construction in a toy example with n=3. It can be used to
distribute a key κ, or optionally a secret x of arbitrary size. When
κ and x are provided at the same time, the two error-correcting
codes may be coalesced into a single one.

stitutes good cryptographic hygiene (and is used in our
proofs) in the sense that it renders κ indistinguishable even
in the face of partial compromise of κ̃. We use the key κ
to perform authenticated encryption of x and then use an
(N,K,D)-error correcting code (ECC) to share both κ̃ and
the ciphertext x̃. We focus in this paper on the basic con-
struction that assigns a single symbol to each share. Thus
we assume K = k. More general constructions are possi-
ble, but omitted from this paper. A recipient with enough
shares can apply the ECC decoding algorithm to recover κ̃
and the ciphertext x̃, and then use κ̃ to derive the key κ nec-
essary to authenticate and decrypt x. In some applications
(e.g., transporting the master key used to derive RFID kill
codes), we may only want to distribute a key. In that case,
we can use κ as the desired key, and eliminate the portion
of the schematic shown in the dashed box.

Our construction assumes that the hash function be-
haves as a random oracle [1], and for large secrets, we
assume the use of an authenticated encryption mode, such
as OCB [29].



82	 17th USENIX Security Symposium	 USENIX Association

Below, we state our claims for the security of this con-
struction. We defer the proofs to Appendix B.

Claim 1 Given our construction above, an underin-
formed attacker’s advantage is bounded by εu such that

Advind
A [Π,X] ≤ εu ≤ 1/Qk−qu .

Claim 2 Against an attacker who makes qr corrupt
queries, if qr < D/2, i.e., qr ≤ ⌊(D − 1)/2⌋, then
Advrec

A [Π,X] = 0 = εr, and if qr ≤ D − 1, then
Advrec−or−detect

A [Π,X] = 0.

Thus, our construction is a (k,n)-TSS scheme with se-
curity tuple (qu,1/Qk−qu ,⌊(D−1)/2⌋,0).

Remark 1 With an appropriate choice of an ECC, we can
generalize the construction above. For example, using a
systematic version of Reed-Solomon as the ECC, κ̃ will be
encoded in the initial code symbols. We then apply a hash
function (SHA-256 with truncation) to those code symbols
to derive κ. If we choose Q = 2|κ̃| (and do not release
Sκ̃

1), then ShareECC becomes a robust PSS scheme, as in
Krawczyk’s scheme [20]. If we choose Q = 2n, then we
have the scheme described above. Intermediate choices of
Q trade increased share size for increased security.

5.4 Implementation Sketch and Real World
Parameterization

We implemented a (15,20)-TSS scheme using a Thing-
Magic Mercury5 reader and commercially-available Alien
Squiggle Gen2 tags. A schematic view of the setup is
shown in Figure 4. Use of a (15,20)-TSS scheme means
that of the 20 available tags, we need to read at least 15
tags successfully to recover the key and decrypt tag data.
We work over the field GF(216), so a share (codeword
symbol) is 16 bits. The Share algorithm was then imple-
mented as follows. We chose a secret key κ of length 128-
bits; we obtained κ by choosing a random 240-bit value
κ̃, hashing it with SHA-256, and then taking the first half
of the output. We then encoded κ̃ into 20 16-bit sym-
bols with a (20,15) Reed-Solomon ECC using the built-in
Reed-Solomon encoder in Matlab’s Communication Tool-
box. This resulted in 20 16-bit shares, one for each tag.

Given that we were using 96-bit tags, we had 80 bits
left over for the tag ID. This particular parametrization re-
quires a cipher with an 80-bit block size. We achieve this
by using the Blowfish block cipher [31], which has a block
size of 64 bits, with Ciphertext-Stealing [11] to expand the
block size to 80 bits. Integrity protection at the individual
tag ID level is provided by the Gen2 protocol.

Each tag ID mi,1 ≤ i ≤ 20, was then replaced by Eκ[mi]
and concatenated with a share of κ̃ (as generated above).
This combined 96-bit string was written into the tag us-
ing the same setup (Figure 4). Because all Gen2 RFID
readers can also wirelessly write to tags, this operation is
accomplished by bring each tag into the antenna field of

the reader and executing a Gen2 write command. In prac-
tice, this operation would be carried out when the case,
pallet, or item tag is initially encoded in the supply chain.
Note that Eκ as used here includes Ciphertext-Stealing as
described above.

For the Recover algorithm, we simply unwound Share.
As shown in Figure 4, the reader sees encrypted tag IDs
with concatenated shares. As long as the reader sees more
than 15 tags, Recover running on the PC outputs the tag
IDs successfully.

In an ECC, a codeword consists of an ordered sequence
of symbols. Because there is no fixed reading order for
tags in our implementation, however, it must be order in-
variant. That is, since shares are not distributed among
players with fixed identities, as in our robustness exper-
iment, we must explicitly associate an index with each
share (effectively assigning a player index to each tag).
Thus, the symbol on a tag must be accompanied by an
index specifying its codeword position. Rather than speci-
fying this index explicitly, and thereby using an additional
16 bits of storage, we derive it implicitly based on the en-
crypted tag ID. In particular, we hash the ID using SHA-
256, and interpret the last 16 bits as the index; of course,
we must do this before sharing the encryption key. This
optimization potentially introduces a new problem: Two
(or more) tags within a case may have ciphertexts that hash
to the same index. A sufficiently large index size can min-
imize this problem. (By the Birthday Paradox, GF(216)
accommodates roughly 256 tags without many collisions.)
As a further optimization, we can dedicate a few additional
bits of storage to disambiguating collisions that do occur.
Finally, if there are still too many collisions, we can sim-
ply choose a new random pre-key κ̃ and compute a new
set of shares.

In general, the first step in parameterizing the TSS
scheme for real-world usage is to determine the total num-
ber of tags n and the key-recovery threshold k. As noted
earlier (section 2.2), these numbers can vary widely be-
tween use cases. Today, pallets typically carry from 1 to
200 tags each. In a typical distribution center setting, an
RFID reader could, depending on pallet composition, fail
to read as many as 2–3% (i.e., 4–6) of the tags in a 200-
item pallet, and it may pick up as many as 3–10 stray tags
from a pallet in an adjacent dock door. This means that
we can see up to 6 erasures, and up to 10 errors in read-
ing. These numbers are borne out by one the authors’ (RP)
long experience in supply chain RFID deployments. Thus
the choice of a (200, 170)-Reed Solomon code (the min-
imum distance D = N −K + 1 is typically omitted from
Reed-Solomon parameterization), which can correct up
to 15 errors or 30 erasures, would provide sufficient er-
ror correction for real-world deployments. As discussed
in Section 2.2, individual consumers typically have fewer
than 40 tags from the same case, so we could alternatively
choose a (200, 40)-Reed Solomon code to maintain pri-
vacy and provide additional robustness to read errors.



USENIX Association 	 17th USENIX Security Symposium	 83






































Figure 4: Schematic of implementation setup 20 TSS-encoded RFID tags, at far right, are prepared using Share as described in
the text. They are read by a ThingMagic Mercury5 reader and the encrypted IDs are passed over the network to a Matlab program
running Recover on a computer. The computer first recovers the Reed-Solomon-encoded secret key and then decrypts the tags. The
two boxes below the schematic depict what the reader sees and the eventual decrypted tag IDs. In practice, Recover would be ported
to run directly on the reader. Given the capabilities of current RFID readers, direct implementation on the reader is straightforward.

Lastly, we remark on the choice of the field size. As the
field size is the main determinant of the extra tag mem-
ory consumed by our scheme, smaller fields mean smaller
memory requirements. Larger field sizes reduce the num-
ber of index collisions, which is useful both to ensure good
decoding rates and to enforce security against an overin-
formed adversary (Appendix A). In applications where
only the underinformed attacker must be considered, we
can potentially reduce the space on each tag to a single bit,
for sufficiently large k and an appropriate ECC scheme.

6 Secret Sharing Across Time

Thus far, we have considered sharing schemes for one
shipment. However, a distributor may wish to increase
security by leveraging the fact that a legitimate recipient
should receive more shipments than an attacker can ac-
cess (recall Example 2 from Section 3). In this section,
we explore a class of schemes that uses such information
disparities across sliding time windows. In the future, we
will investigate schemes leveraging the entropy of the en-
tire history of interactions between a sender and recipient.

6.1 Defining SWISS: Sliding-Window Infor-
mation Secret Sharing

In the schemes below, we assume a sender periodically
emits a share Si. For RFID purposes, we may suppose the
sender is a manufacturer who periodically ships out con-
tainers of RFID-labeled items. Each share may optionally
be further shared out amongst the RFID tags in the con-
tainer as described in Section 5. Each period also has an
associated key κi. Thus, we have a sequence of shares
S = {S0,S1, . . .} that expands indefinitely over time. We

...
k

 n

 n

ρ(S)

 n

Figure 5: In this example, if the adversary holds a set Ŝ of k = 3
shares (shown as shaded boxes), then we define ρ(Ŝ) as the union
of all (three) windows of n = 6 shares containing the original k
shares. We require that the adversary be unable to recover keys
for periods outside of ρ(Ŝ). The figure assumes λ = 0. If λ = 1,
then ρ(Ŝ) would include two additional shares: one before and
one after the set ρ(Ŝ) currently shown.

assume that within any window of n elements, only a le-
gitimate recipient receives at least k of the shares in that
window, and given those shares, the recipient should be
able to recover the corresponding keys. An adversary re-
ceiving fewer shares should learn nothing about the keys.

More formally, a SWISS scheme is defined as a pair of
algorithms Π = (Share,Recover), where:

• Share(k,n,τ) is a probabilistic algorithm that takes as
input a threshold for recoverability k, a window size
n, and a security parameter τ. It outputs two “infi-
nite” vectors κ and S, where κi ∈ {0,1}τ is the key
for period i, and Si is the share for period i. On in-
valid input, Share outputs the special symbol ⊥.

• Recover is a deterministic algorithm that takes as in-
put S′ ⊂Wj where Wj defines a sequence of n shares
starting at time j such that Wj = {Si : j ≤ i < j +n},
and |S′| ≥ k. The output of Recover(S′) is a set of
keys K = {κi : Si ∈ S′} for the shares provided in S′

or ⊥, a special value indicating a recovery failure.



84	 17th USENIX Security Symposium	 USENIX Association

In our security definitions, we again assume an honest
dealer, i.e., correct execution of Share. Below, we give
formal definitions for our privacy and recoverability re-
quirements.

Privacy. To define privacy, we require that the adversary
cannot obtain the key for any share she does not possess.
If the adversary holds fewer than k shares, she should not
learn any keys. We deal with the case in which the adver-
sary holds more than k shares as follows.

Define the set of shares held by the adversary as Ŝ. Let
ρ(Ŝ) be the set of all shares that lie in a window of size n+
λ for which the adversary has recovered at least k shares.
We require the adversary to be unable to recover the key
for any element in ρ(Ŝ), the complement of ρ(Ŝ). Since
k shares allow the adversary to recover all of the keys in
a window of size n, the value of λ indicates the amount
of information k shares “leak” about keys not contained
within a window of n shares. Figure 5 illustrates these
requirements.

More formally, we can define privacy based on the fol-
lowing experiment:

Experiment Expind−swiss
A [Π]

(S,κ) R← Share(k,n,τ);
i ← A(“choose”);
κR R←{0,1}|κ|; b R←{0,1};
b′ ← Acorrupt(S,·)(π(b,κR,κi),“corrupt”);
if i �∈ ρ(Ŝ) or i �∈ Ŝ then

output ‘1’ if b′ = b, else ‘0’;
else output ’0’;

where π(0,x,y) = (x,y) and π(1,x,y) = (y,x). Essen-
tially, the adversary is asked to choose a time period
i. After corrupting some number of shares, the ad-
versary must distinguish between the key for period i
and a randomly selected key. We consider the ad-
versary successful if the period chosen does not corre-
spond to a share held by the adversary, or if the pe-
riod lies outside the set ρ(Ŝ) induced by the adversary’s
selection of shares. The adversary’s advantage is then

Advind−swiss
A [Π]

△
=2Pr

�

Expind−swiss
A [Π] ⇒ 1

�

−1.

Recoverability. We require that any set S′ ⊆ Wj with
|S′| ≥ k shares suffices to recover the keys associated with
each share in the set, namely {κi : Si ∈ S′}. We define re-
coverability for a legitimate recipient in the erasure model;
in other words, shares may be lost but not corrupted. We
can convert our SWISS schemes to a corruption model
by replacing our use of PSS schemes with robust PSS
schemes, such as Krawczyk’s [20].

Definition 2 We define a (k,n)-SWISS scheme as a pair
of algorithms Π as defined above where Share produces
shares of size µ. The security is characterized by the pair

(λ,ε), where (as explained above) k shares are sufficient
to reveal λ “nearby” keys for time periods not contained
in a window of n shares, and Advind−swiss

A [Π] ≤ ε.

Thus, an ideal SWISS scheme would have (λ,ε) =
(0,0) with minimal µ.

6.2 A Family of SWISS Schemes

In our SWISS construction, we want to ensure that the
secret for a case is only available given possession of that
case. To achieve this property, we make the key κi for
case i a function of both a window key and a secret value
associated with the case (or its RFID tag).

Ideally, the window key for a window of n cases should
be recoverable if and only if the receiver possesses k or
more cases within that window. A naı̈ve SWISS scheme
would simply generate a key for every possible window of
size n and share each key using a (k,n) scheme. But a case
would then need a share for every window covering it, and
hence the per-case share size would grow linearly with the
size (n) of each window.

Instead, we aim to bring the share size down to a small
constant independent of k and n. We use two techniques
for this goal. First, we allow some sloppiness in our access
structure. Our access structure (in our main construction)
depends on superwindows of size 2n that each overlap
with the previous superwindow by n (see Figure 6); each
superwindow secret is shared using a (k,2n) scheme. Ac-
cess to a window secret requires recovery of the secrets for
either one of its two corresponding superwindows. Any k
shares in a sequence of size n fall into some superwindow
of size 2n, and therefore allow recovery of the superwin-
dow secret. The “sloppiness” is this: Recovery of shares
in one window allows for recovery of secrets in nearby
windows.

Given the superwindow scheme described above, we
could encrypt the secret κi for each case i under each of
its corresponding superwindow secrets, σ and σ′. How-
ever, using a second technique based on bilinear maps, we
can derive a common secret directly from either of the two
superwindow secrets σ or σ′.

Below, we first explain the assumptions necessary for
our schemes. Then we present our main SWISS construc-
tion (Section 6.2.2) and show how to generalize it to a
wider range of parameters (Section 6.2.3).

6.2.1 Assumptions

Our family of SWISS schemes uses bilinear pairing to re-
duce storage costs. In the full version of this paper, we
describe a variant of our SWISS construction based on the
more standard RSA assumption. Unfortunately, that ver-
sion does not generalize efficiently to large window sizes
in the same way as does the bilinear map scheme, and
hence we focus on the latter.



USENIX Association 	 17th USENIX Security Symposium	 85

We give some very brief preliminaries on bilinear maps,
referring the reader to [7] for details. Let E be a mul-
tiplicative cyclic group of prime order p under a bilinear
operator ê as defined in Boneh-Franklin [7]. Thus we have
ê : E×E →E ′ for a second group E ′. The bilinear operator
ê has the property that ∀G,H ∈ E, ê(Ga,Hb) = ê(G,H)ab;
it is also non-degenerate, meaning that if G is a generator
of E, then ê(G,G) �= 1.

Our work relies on the hardness of a slightly modified
Bilinear Diffie-Hellman Exponent (BDHE) problem [6,8].
Specifically, let g and γ be random generators of E, and α
be a random element in Z

∗
p. Our (ℓ,L)-BDHE problem is

defined as:

Given g,γ,g(αi) for i = 1,2, ..., ℓ−L, ℓ+1, ...,2ℓ

and γ(αi) for i = 1,2, ...,L−1
compute ê(g,γ)(α

ℓ).

In the original framing of the ℓ-BDHE problem [6, 8],
only γ (rather than additional α powers of γ) is assumed
to be known. We assume that L ≥ 2, since the (ℓ,1)-
BDHE problem simply degenerates to the ℓ-BDHE prob-
lem. Loosely speaking, the (ℓ,L)-BDHE assumption in E
says that no efficient algorithm can solve the (ℓ,L)-BDHE
problem in E with non-negligible probability.

We can apply the “master” theorem of Boneh et
al. [6] to bound the difficulty of (ℓ,L)-BDHE in a
generic group. In their terminology, we have P =
(1,y,y2, ...,yL−1,x,x2, ...,xℓ−L,xℓ+1, ...,x2ℓ), Q = (1) and
f = xℓy. This implies that an attacker A with advan-
tage 1/2 in solving the decision (ℓ,L)-BDHE problem
in a generic bilinear group E must take time at least

Ω
�

�

p/(4ℓ)−2ℓ
�

. E.g., if we assume the distributor

sends one billion windows (or less), then solving the de-
cision (ℓ,L)-BDHE problem in a generic bilinear group E
of size 192 bits takes time at least 280. Of course, a lower
bound in a generic group does not imply a lower bound in
any specific group.

6.2.2 Our Main SWISS Construction

In Section 6.2.3, we present a fully generic overlapping
SWISS scheme, but first, to simplify the exposition, we
describe a single member of the family (see Figure 6).
This example provides a (k,n)-SWISS scheme with µ = 3τ
and security parameters (2n− k,ε).

Starting at time 0, the sender defines a series of su-
perwindows W0,Wn,W2n, ...,Wℓn, each of size 2n. Thus,
each superwindow consists of two windows of size n, with
one window overlapping a window from the previous su-
perwindow, and one window overlapping a window from
the subsequent superwindow. Each superwindow Wℓn de-
fines a (k,2n) perfect secret sharing (PSS) of the super-
window secret σℓn. Since each time period i is covered by
two superwindows, each comprising its own secret shar-
ing scheme, the share Si distributed in each time period

...
W0

Wn

W2n

n

A

Figure 6: Each superwindow of 2n shares (in the example
shown here, n = 3) overlaps with the previous superwindow by n
shares. Each superwindow Wℓn is a (k,2n) sharing of the super-
window secret σℓn. Each time period is covered by two super-
windows. For example, the share labeled A is covered by super-
windows W0 and Wn. As a result the key for that period κA can
be recovered from either superwindow secret, σ0 or σn.

consists of two sub-shares (sℓn
i ,s(ℓ+1)n

i ), one for σℓn and
one for σ(ℓ+1)n. We also augment the share with a random

nonce ri
R← {0,1}τ. Thus, the share emitted during time

period i is Si = (sℓn
i ,s(ℓ+1)n

i ,ri).
Because any time period i is covered by two superwin-

dows (say Wℓn and W(ℓ+1)n), we would like the key κi to
be recoverable from the superwindow secret of either one
(since we do not know a priori in which superwindow the
recipient will have k shares). Like many problems in com-
puter science, we can solve this by adding another layer of
indirection. Let y,z ∈ E, a ∈ Z

∗
p, and let (P0,P1) = (y,ya)

be a public key. Let each of the superwindow secrets be
defined so that σℓn = zaℓ

. We define a series of window
secrets ω0,ωn, ...,ωℓn so that

ωℓn = ê(P1,σℓn) = ê(P0,σ(ℓ+1)n) = ê(y,z)aℓ+1
.

That is, knowing σℓn allows a recipient to derive ωℓn and
ω(ℓ+1)n.

Finally, we define each key κi based on the window it
belongs to, as well as the random nonce ri distributed with
share Si, as κi = h(ri,ωkn), where h : {0,1}∗ → {0,1}τ is
a hash function modeled as a random oracle [1].

In the next section, we show how to generalize this con-
struction to decrease λ at the cost of increasing the size
of each share. We can define an adversary for this more
general scheme as follows:
Definition 3 We define an (ℓ,L,q)-adversary A as an at-
tacker who achieves an Advind−swiss

A [Π] < ε advantage in
our privacy experiment (defined in Section 6.1), where
Π is an instantiation of our generic SWISS family with
Ψ = L− 1 (for L ≥ 2) that produces at most 2ℓ shares.
The adversary makes at most q random oracle queries.

In Appendix C, we use this definition to demonstrate the
security of the generalized scheme (and hence this specific
instantiation) by proving the following theorem:
Theorem 1 For any polynomial-time (ℓ,L,q)-adversary
A with Advind−swiss

A = ε and ℓ > L ≥ 2, there is a
polynomial-time adversary A′ that solves the (ℓ,L)-BDHE
problem with probability (ε−2−τ)/qℓ−1/2τ.



86	 17th USENIX Security Symposium	 USENIX Association

Essentially the theorem states that given an adversary who
achieves a non-negligible advantage in our privacy experi-
ment, we can construct an attacker who violates the (ℓ,L)-
BDHE assumption. We also demonstrate that this con-
struction satisfies our recoverability requirement.

Remark 2 As described, our SWISS construction uses a
PSS scheme to create superwindow shares. Thus, the
construction tolerates erasures but not errors. However,
we could readily replace the PSS scheme with a robust
scheme, such as our TSS scheme from Section 5, which
would both decrease the size of the individual shares and
add error tolerance to the SWISS construction.

6.2.3 A Generic SWISS Family

The above scheme can be generalized to allow decreased
values of λ at the cost of increased storage (see Figure 7).
Specifically, for any value of Ψ < n, we can create a (k,n)
SWISS scheme with µ = (Ψ+2)τ and security parameters
((1+ 1

Ψ )n− k,ε).
Essentially, we divide each superwindow W into Ψ + 1

windows of size n
Ψ . The superwindows form (k, (Ψ+1)n

Ψ )
sharing schemes of the superwindow secrets, and each su-
perwindow overlaps the previous superwindow by Ψ win-
dows. Thus, any given window is covered by Ψ+1 super-
windows, and the window secret can be recovered from
any of the superwindow secrets, using the same elliptic
curve pairings technique as before. In other words, we
define a public key (P0,P1, ...,PΨ) = (x,xa, ...,xaΨ

), and a
window secret ωℓn is defined as:

ωℓn = ê(PΨ,σℓn) = ê(PΨ−1,σ(ℓ+1)n) = ...

= ê(P0,σ(ℓ+Ψ)n) = ê(x,z)ℓ+Ψ.

To determine λ, we consider the worst case, in which k ≤
n
Ψ , and the adversary’s k shares fall within a single win-
dow. The window then is covered by Ψ+1 superwindows,
allowing the adversary to recover secrets for 2Ψ + 1 win-
dows, or (2Ψ + 1) n

Ψ = 2n + n
Ψ secrets. These secrets can

be at most a superwindow ( Ψ+1
Ψ n) away from the k secrets

held by the adversary, so λ = Ψ+1
Ψ n−k = (1+ 1

Ψ )n−k. If
k > n

Ψ , then fewer than Ψ + 1 superwindows will contain
k shares, and hence λ will be even smaller.

In our example scheme from Section 6.2.2, Ψ = 1, so
each superwindow formed a (k,2n) secret-sharing scheme,
but we could also use Ψ = 2, with each superwindow con-
sisting of 3 windows of n

2 shares, and the superwindow as
a whole constituting a (k, 3

2 n) sharing of the superwindow
secret (see Figure 7(a)). This would produce a smaller
value of λ = 3

2 n− k, but at the cost of larger shares: each
issued share would now contain three shares (one for each
superwindow overlapping a particular window) and the
random nonce ri.

6.2.4 Real World Instantiation

To make our SWISS construction more concrete, we sug-
gest sample parameters for real world deployments. Sup-
pose the sender needs to ship one million or fewer shares.
We divide those shares into 10,000 windows of 100 shares
each, giving us ℓ = 5,000,n = 100. A legitimate recipi-
ent will receive at least k = 20 shares in any window. If
we use the scheme from Section 6.2.2, then Ψ = 1 and
L = Ψ + 1 = 2. Finally, if we use τ = 128 bit keys, then
the share for each period will be 3τ = 384 bits in size. In
contrast, the naı̈ve scheme described earier in this section
would require nτ = 12,800 bits per share.

We described both our SWISS scheme and the naı̈ve
scheme using PSS as a component. If we replace the PSS
scheme with our TSS scheme from Section 5, then we
have a share size of 16 bits. In our scheme, we still need
a random nonce of at least 60 bits, but that yields shares
of size 2 · 16 + 60 = 92 bits, just small enough to fit on
an EPC tag. In contrast, the naı̈ve scheme would require
n ·16 = 1,600 bits.

7 Conclusions and Future Work

We have described two approaches to secret sharing in
unidirectional channels: secret-sharing across space and
secret-sharing across time. As we have shown, secret-
sharing across space is a tool of practical promise for
privacy protection in real-world RFID-enabled supply
chains. Our SWISS scheme for secret-sharing across time
can, similarly, help address the challenges of RFID tag and
reader authentication. An open problem of particular in-
terest in our SWISS construction, however, is elimination
of its reliance the non-standard (ℓ,L)-BDHE problem in
our fully generic overlapping SWISS scheme. We also
plan to investigate extended SWISS schemes that leverage
the entire history of interaction between a sender and re-
ceiver, rather than simply a window of recent history.

More broadly, we believe that a holistic view of the spe-
cial operational requirements of RFID tags and the highly
constrained resources of tags can give rise to important
new cryptographic problems. Our future work will aim
to calibrate cryptographic tools like those presented here
to RFID supply-chain infrastructure as it evolves and its
special operational demands come into clearer focus.

8 Acknowledgements

The authors would like to thank Burt Kaliski, Jonathan
McCune, Alina Oprea, and Diana Parno for their helpful
feedback and editorial suggestions. We are also grateful
for the comments from the anonymous reviewers.



USENIX Association 	 17th USENIX Security Symposium	 87

...

n

2

(a) A SWISS scheme with Ψ = 2,n = 4. Each superwin-
dow is a (k,3n/2) sharing of the superwindow secret.

...

n

3

(b) A SWISS scheme with Ψ = 3,n = 6. Each superwindow shown is a
(k,4n/3) sharing of the superwindow secret.

Figure 7: Additional SWISS examples We can create additional SWISS schemes by increasing the number of windows per super-
window while decreasing the number of shares in each window. As we increase the number of windows, λ decreases, but the number
of shares that must be held in each time period increases.

References

[1] M. Bellare and P. Rogaway. Random oracles are
practical: A paradigm for designing efficient proto-
cols. In ACM CCS, pages 62–73, 1993.

[2] M. Bellare and P. Rogaway. Robust computational
secret sharing and a unified account of classical
secret-sharing goals. In ACM CCS, 2007.

[3] C. H. Bennett, G. Brassard, C. Crepeau, and U. Mau-
rer. Generalized privacy amplification. In ISIT: Pro-
ceedings IEEE International Symposium on Infor-
mation Theory, 1994.

[4] G. Blakley. Safeguarding cryptographic keys. In
AFIPS Conference Proceedings, volume 48, pages
313–317, 1979.

[5] G. Blakley and C. Meadows. Security of ramp
schemes. In Advances in Cryptology: Proceedings
of CRYPTO, 1984.

[6] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical
identity based encryption with constant size cipher-
text. In EUROCRYPT, volume 3494 of Lecture Notes
in Computer Science, pages 440–456, 2005.

[7] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. SIAM Journal of Computing,
32(3):586–615, 2003.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion resis-
tant broadcast encryption with short ciphertexts and
private keys. Advances in Cryptology: Proceedings
of CRYPTO, 2005.

[9] E. F. Brickell and D. R. Stinson. Some improved
bounds on the information rate of perfect secret shar-
ing schemes. Journal of Cryptology, 5:153–166,
1992.

[10] R. M. Capocelli, A. D. Santis, L. Gargano, and
U. Vaccaro. On the size of shares for secret sharing
schemes. Journal of Cryptology, 6:157–167, 1993.

[11] J. Daemen. Hash Function and Cipher Design:
Strategies Based on Linear and Differential Crypt-

analysis. Ph.D. thesis, Katholieke Universiteit Leu-
ven, Leuven, Belgium, Mar. 1995.

[12] EPC Global. EPC R� Radio-Frequency Protocols
Class-1 Generation-2 UHF RFID Protocol for Com-
munications at 860 MHz – 960 MHz Version 1.1.0.
EPC Global, 2006.

[13] EPC Global. EPC R� Item Level Tagging Joint Re-
quirements Group. EPC Global, 2007.

[14] V. Guruswami and M. Sudan. Improved decoding of
Reed-Solomon and algebraic-geometry codes. IEEE
Transactions on Information Theory, 45(6):1757–
1767, 1999.

[15] A. Juels. Strengthing EPC tags against cloning. In
ACM Workshop on Wireless Security (WiSe), pages
67–76. ACM Press, 2005.

[16] A. Juels, D. Molnar, and D. Wagner. Security issues
in e-passports. In SecureComm, 2005.

[17] A. Juels and M. Sudan. A fuzzy vault scheme. Des.
Codes Cryptography, 38(2):237–257, 2006.

[18] E. D. Karnin, J. W. Greene, and M. E. Hellman. On
secret sharing systems. IEEE Transactions on Infor-
mation Theory, 29(1):35–41, 1983.

[19] A. Kiayias and M. Yung. Directions in polynomial
reconstruction based cryptography. IEICE Transac-
tions, E87-A(5):978–985, 2004.

[20] H. Krawczyk. Secret sharing made short. In Ad-
vances in Cryptology: Proceedings of CRYPTO,
pages 136–146, New York, NY, USA, 1994.
Springer-Verlag New York, Inc.

[21] M. Langheinrich and R. Marti. Practical minimalist
cryptography for RFID privacy. In submission, 2007.

[22] M. Langheinrich and R. Marti. RFID privacy using
spatially distributed shared secrets. In Proceedings
of UCS 2007, LNCS, Berlin Heidelberg New York,
Nov. 2007. Springer. (To appear).

[23] J. L. Massey. Shift register synthesis and BCH de-
coding. IEEE Transactions on Information Theory,
15(1):122–127, 1969.



88	 17th USENIX Security Symposium	 USENIX Association

[24] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-
is-Believing: Using camera phones for human-
verifiable authentication. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2005.

[25] R. J. McEliece and D. V. Sarwate. On sharing secrets
and Reed-Solomon codes. Communications of the
ACM, 24(9):583–584, 1981.

[26] W. Ogata and K. Kurosawa. Some basic properties of
general nonperfect secret sharing schemes. Journal
of Universal Computer Science, 4(8), 1998.

[27] M. O. Rabin. The information dispersal algorithm
and its applications, 1990.

[28] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal SIAM, 8:300–304, 1960.

[29] P. Rogaway, M. Bellare, and J. Black. OCB: A block-
cipher mode of operation for efficient authenticated
encryption. ACM TISSEC, Nov. 2001.

[30] N. Sastry, U. Shankar, and D. Wagner. Secure verifi-
cation of location claims. In ACM Workshop on Wire-
less Security (WiSe 2003), pages 1–10, Sept. 2003.

[31] B. Schneier. Description of a new variable-length
key, 64-bit block cipher (blowfish). In R. J. An-
derson, editor, FSE, volume 809 of Lecture Notes in
Computer Science, pages 191–204. Springer, 1993.

[32] A. Shamir. How to share a secret. Communications
of the ACM, 22(11):612–613, 1979.

[33] F. Stajano and R. Anderson. The resurrecting duck-
ling: Security issues for ad-hoc wireless networks.
In Security Protocols, 7th International Workshop.
Springer Verlag, 1999.

A Overinformed Adversaries

In the body of the paper, we discuss the notion of an un-
derinformed adversary, one that has an insufficient set of
shares to reconstruct a secret key. We also briefly con-
sider an overinformed adversary., one that possesses a set
of shares sufficient to reconstruct one or more secret keys,
but has too many shares to feasibly determine such keys.
We can design our system such that an adversary is over-
informed in settings where the adversary is forced to scan
the contents of not one, but multiple cases simultaneously.

Consider, for example, an attacker who periodically
scans a store shelf, hoping to accumulate enough shares
to recover the associated key. The adversary’s reader may
receive responses from items that arrived in multiple in-
dependent cases. In this situation, we would like it to be
hard for the adversary to recover any case secret from the
full set of secrets, even if a subset of the adversary’s shares
would suffice to reconstruct the secret. We can appeal to
the fact that when shares from multiple cases are mixed
together, the large set of shares can make it hard to decode
any individual secret.

To help render an attacker overinformed, we can delib-
erately introduce “chaff” among the shares Si in a case.

Essentially, we replace ζ shares of κ̃ with randomly chosen
values. The choice of 0 ≤ ζ < D/2 represents a tradeoff
between security against an overinformed attacker and the
error-tolerance of the scheme. For example, by choosing
ζ = D

3 , an adversary who recovers the shares from two se-
crets will hold 2D

3 chaff values—potentially exceeding the
recovery threshold for the ECC scheme, as we now show.
In this situation, however, a legitimate recipient can still
tolerate D

6 errors in the shares she receives.

The following experiment formalizes the notion of an
overinformed adversary.

Experiment Expind′
A [Π,X,α,β]

(x1, ...,xα) R← X;

C R← Sz
i=1 Ci, where Ci

R
⊆ Share(xi), and |Ci| = β;

H ←{h : h = H(xi),1 ≤ i < α};
x′ ← Acorrupt(C,·)(H,“corrupt”);
output ‘1’ if x ∈ (x1, ...,xα), else ‘0’

In this experiment, we choose α random secrets. The
adversary has access to an unlabeled set of shares,
which contains β randomly chosen shares from each
secret. The adversary also receives the hash H of
each secret. Given this information, the adversary
must recover one of the original secrets. In this ex-
periment, we define the advantage of adversary A as

Advind′
A [Π,X,α,β]

△
=Pr

�

Expind′
A [Π,X,α,β] ⇒ 1

�

.

We can characterize the overinformed adversary’s task
in terms of the polynomial reconstruction (PR) problem,
the decoding of a Reed-Solomon codeword in the presence
of errors (see [19] for detailed discussion).

Given an underlying (N,K)-Reed-Solmon code, and a
set of t symbols, of which ζ are corrupted, the classical
Peterson-Berlekamp-Massey (PBM) algorithm [23] suc-
cessfully decodes a set of symbols if t − ζ ≥ (t + K)/2
(or, equivalently, ζ ≤ (t −K)/2. A more powerful decod-
ing scheme is that of Guruswami and Sudan (GS) [14],
which successfully decodes for t − ζ >

√
KN in any field

of cardinality at most 2N . It is conjectured that decoding
beyond the error bound represented by GS is infeasible in
a general sense and thus that GS offers a likely bound on
the hardness of the PR problem.

That said, there are different formulations of the PR
problem and little work on the concrete hardness of the
problem. Schemes that achieve unconditional security,
e.g., [17] do not offer attractive parameterization ranges
for our purposes. Choosing credible and practical hard-
ness assumptions for an overinformed adversary in our
scheme is an open problem.



USENIX Association 	 17th USENIX Security Symposium	 89

A.1 Parameterization of Our RFID Secret-
Sharing Scheme

We give a brief characterization of what we believe to
be secure and feasible parameterizations of our scheme.
These parameterizations permit PBM decoding for the le-
gitimate reading of a single RFID-tagged case and at the
same time exceed the GS bound for security against over-
informed adversaries. We emphasize, however, that fur-
ther research is needed for firm determination of the secu-
rity of our scheme in a concrete sense.

Suppose that a case contains N tags, of which ζ are
chaff. PBM decoding for a scanned case is always possi-
ble when the number of corruptions (or erasures) of valid
symbols e is such that N − (e+ζ) ≥ (N +K)/2.

Example 3 Suppose that K = 8, N = 200, and ζ = 86.
Then it is possible to recover the secret associated with a
case for e ≤ 10, and thus up to a 5% corruption of tag
symbols.

Suppose that an adversary reads symbols associated
with q cases and attempts to recover the secret x associ-
ated with a particular case. We can establish a lower bound
on the hardness of this problem by rendering the problem
easier for the adversary. In particular, let us assume that
the adversary has access to an oracle that identifies valid
shares associated with the q−1 untargeted cases (but does
not otherwise reveal which shares correspond to which
case). Then the adversary can reduce the problem of re-
covering x to a decoding problem with N −ζ valid shares
and ζq chaff shares, and thus t = N + (q− 1)ζ shares in
total. The GS bound implies that recovery of x is hard if
N −ζ <

�

K(N +(q−1)ζ).

Example 4 Suppose that K = 8, N = 200, and ζ = 86.
Then the problem of recovering a target case secret x is
hard under the GS bound if 114 <

√
848+688q, and thus

for q ≥ 18.

A stronger bound is possible assuming that valid sym-
bols, i.e., secret-bearing data, in untargeted cases may
be regarded as chaff. This gives us a slightly unortho-
dox problem distribution in which a problem instance
has q embedded, secret polynomials. In this case, how-
ever, the GS bound implies that recovery of x is hard if
N − ζ <

√
qKN. With an appropriate parameter choice,

we can obtain strong concrete results.

Example 5 Suppose that K = 100, N = 200, and ζ = 40
(giving a 5% correction buffer in the single-case setting,
as above). Then the problem of recovering a target case
secret x is hard under the GS bound if 160 <

√
20000q,

and thus for q ≥ 2.

B Proofs of Security for Our Tiny Secret
Sharing (TSS) Scheme

B.1 Proof of Privacy

Since many of our applications only require the distribu-
tion of a secret key, we first define a simplified experiment
to measure the indistinguishability of κ. Note that for this
experiment, we excise the portion of our scheme in the
dotted box in Figure 3. Effectively, we share out a null
secret x, and write Share() to indicate this fact. The proof
of privacy for secrets of arbitrary size then follows in a
straightforward manner.

We define a key indistinguishability experiment as:

Experiment Expind−κ
A [Π,X]

(κ0,S0) R← Share(); (κ1,S1) R← Share();
b R←{0,1};

b′ R← Acorrupt(Sb,·)(κ0,κ1,“corrupt”);
output ‘1’ if b = b′, else ‘0’

In this experiment, the adversary receives two se-
cret keys generated by our sharing algorithm, as
well as the shares corresponding to one of the
keys and must determine to which key they corre-
spond. We define the advantage of adversary A as

Advind−κ
A [Π,X]

△
=2Pr

�

Expind−κ
A [Π,X] ⇒ 1

�

−1.

For a generic ECC, if the adversary makes at most qu
corrupt queries, then her total amount of information is
upper-bounded by Qqu . Since we model the hash function
applied to pre-key κ̃ as a random oracle, the adversary’s
advantage in distinguishing κ0 and κ1 is bounded above
by Advind−κ

A [Π,X] ≤ 1/Qk−qu . Assuming an encryption
algorithm in which key indistinguishability implies cipher-
text indistinguishability (e.g., in an ideal cipher model),
this bound then translates to the more general sharing of
an arbitrary secret. Thus, we have Advind

A [Π,X] ≤ εu ≤
1/Qk−qu . This yields Claim 1 from Section 5.3.

B.2 Proof of Robustness

With a generic linear (N,K,D)-ECC, it is possible to re-
cover a message from a codeword with fewer than D/2 er-
rors. Thus, as long as the adversary does not corrupt D/2
shares, εr = 0. Similarly, such a code can recover from
D−1 erasures; and can also detect up to D−1 errors. As
discussed in Appendix A, we can deliberately introduce ζ
chaff shares into the ECC to confound the overinformed
adversary. This would change are security parameters
such that if qr < D/2−ζ, then Advrec

A [Π,X] = 0 = εr, and
if qr ≤ D− 1− ζ, then Advrec−or−detect

A [Π,X] = 0. This
yields Claim 2 from Section 5.3.



90	 17th USENIX Security Symposium	 USENIX Association

C Proofs of Security and Recoverability for
our SWISS Scheme

We prove that our generic family of SWISS schemes from
Section 6.2.3 meets our privacy and recoverability require-
ments. Since our main construction from Section 6.2.2 is
a specific instantiation (with Ψ = 1), its security follows
from the security of the generic family of schemes.

C.1 Proof of Privacy

To demonstrate that our generic family of SWISS schemes
achieves our privacy requirement, we prove Theorem 1
based on the adversary specified in Def. 3. Recall that our
generic family of SWISS schemes is parameterized by Ψ,
one less than the number of overlapping superwindows.

Proof of Theorem 1: Suppose we are given an (ℓ,L)-
BDHE instance comprising γ(αi) for i = 1,2, ...,L− 1 and
the sequence U ′ = g′(α

i) for i = 1,2, ..., ℓ−L, ℓ+ 1, ...,2ℓ.
We construct a SWISS-scheme simulator based on an
(ℓ,L,q)-adversary A as follows.

Simulator Construction. First, we construct an ap-
propriate public key by letting (P0,P1, ...,PL−1) =
(γ,γα, ...,γαL−1

). Then, we select a random j ∈ {1, ..., ℓ}.
This index is our guess as to the superwindow in which
the adversary will select a challenge key. If we let
g = g′(α

ℓ− j), then U ′ contains the subsequence U =
gα,gα2

, ...,gα j−L
,gα j+1

, ...,gαℓ
.

We use this subsequence U as the set of underly-
ing superwindow keys in the procedure described in
Section 6.2.2, with each superwindow representing a
(k, Ψ+1

Ψ n) sharing of g(αi). For the superwindows corre-

sponding to g(α j−L+1), ...,g(α j) (which are unknown), we
simply share a random value. This procedure creates a set
S of shares. If A queries corrupt(S, i), we respond with Si.

To respond to hash queries, we keep a list V of previous
queries. Thus, when A invokes h(y,z) for the first time,

we choose a random value v R← {0,1}τ and add (y,z,v)
to the internal list V . If A has previously invoked h on
(y,z), then we return the corresponding value of v from
V . This creates a perfect implementation of the random
oracle contract.

When A terminates, we ignore its output, choose a ran-

dom hash response (y,z,v) R← V and return z.

Simulator Correctness. From the SWISS adversary’s
point of view, the construction above accurately simulates
the ind-swiss Experiment. Our replies to the hash queries
perfectly instantiate a random oracle, so they offer the ad-
versary no information with which to distinguish a real
experiment from a simulation. Our construction deviates
from the true protocol in one important respect: the keys

for the superwindows corresponding to g(α j−L+1), ...,g(α j)

are chosen at random (since we do not know the appro-
priate values). However, the definition of ρ precludes the
adversary from recovering these superwindow secrets, and
hence, she cannot determine that these values do not con-
form to the expected structure. Nonetheless, because we
choose the superwindow secrets at random, we cannot pro-
vide the adversary with the correct value of κi. In other
words, from our perspective, the value of κi provided to
the adversary is a random value. At some point, the ad-
versary will query h(ri,ωkn), but since we cannot recog-
nize ωkn, we will not know that we should return κi. For-
tunately, by the time the adversary makes this query, we
have already extracted the necessary information, namely
ωkn, so that even if the adversary quits upon determining a
discrepancy, we will still succeed.

Probability of Success Our guess j for the superwin-
dow from which A selects a challenge key κi is correct
with probability ≥ 1/ℓ. Since h has a range of {0,1}τ

and A has an ε advantage, it is clear under the random or-
acle assumption on h that A inputs ω jn with probability
≥ ε−2−τ. If A has queried h with ω jn in the course of the
simulation, then the probability that we output the correct
ω jn = ê(g,γ)(α

ℓ) is just 1/q.
The only other way the adversary can succeed is by re-

covering a key for a share she does not hold. However,
without the share, the adversary has no knowledge of ri.
The random oracle assumption on h guarantees that the ad-
versary succeeds in guessing κi with probability less than
1/2τ. Our theorem bound follows.

C.2 Proof of Recoverability

A legitimate receiver (one who recovers at least k shares
out of some window W ′ of n shares) can determine the
key corresponding to each share. Observe that given the
overlapping superwindow construction, the window W ′ is
entirely contained within at least one superwindow Wℓn.
Thus, k elements from W ′ suffice to reconstruct the su-
perwindow secret σℓn, which can be used to calculate the
window secrets ωℓn, ω(ℓ+1)n, ..., ω(ℓ+Ψ)n. Each window is
of length n/Ψ, and hence these two window secrets cover
all (Ψ + 1)n/Ψ elements in superwindow Wℓn. Using the
random nonce ri in each share Si, the legitimate receiver
can calculate κi by hashing ri with the appropriate win-
dow secret.




