
To appear in The Journal of Cryptology, Springer-Verlag.

Selecting Cryptographic Key Sizes

Arjen K. Lenstra1, Eric R. Verheul2

1 Citibank, N.A., and Technische Universiteit Eindhoven,
1 North Gate Road, Mendham, NJ 07945-3104, U.S.A.,

arjen.lenstra@citicorp.com
2 PricewaterhouseCoopers, GRMS Crypto Group,

Goudsbloemstraat 14, 5644 KE Eindhoven, The Netherlands,
eric.verheul@[nl.pwcglobal.com, pobox.com]

Abstract. In this article we offer guidelines for the determination of key
sizes for symmetric cryptosystems, RSA, and discrete logarithm based
cryptosystems both over finite fields and over groups of elliptic curves
over prime fields. Our recommendations are based on a set of explicitly
formulated parameter settings, combined with existing data points about
the cryptosystems.

1 Introduction

1.1 The Purpose of this Paper

Cryptography is one of the most important tools that enable e-commerce because
cryptography makes it possible to protect electronic information. The effective-
ness of this protection depends on a variety of mostly unrelated issues such as
cryptographic key size, protocol design, and password selection. Each of these
issues is equally important: if a key is too small, or if a protocol is badly de-
signed or incorrectly used, or if a password is poorly selected or protected, then
the protection fails and improper access can be gained.

In this article we give some guidelines for the determination of cryptographic
key sizes. For each of a number of cryptosystems we describe the effort and
cost required for a successful attack, where the cost may be measured in several
different ways. Other protocol- or password-related issues are not discussed. We
do not aim to predict the future, but if current trends persist, then following
our guidelines will result in acceptable security for commercial applications of
cryptography.

Key size recommendations are scattered throughout the cryptographic liter-
ature or may, for a particular cryptosystem, be found in vendor documentation.
Unfortunately it is often hard to tell on what premises (other than marketabil-
ity) the recommendations are based. As far as we know this article is the first
uniform, clearly defined, and properly documented treatment of this subject for
the most important generally accepted cryptosystems. We formulate a set of
explicit parameter settings and apply these uniformly to existing data about
the cryptosystems. The resulting key size recommendations are thus obtained
in a uniform mechanical way, depending only on our default settings, but in-
dependent of further assumptions or non-scientific considerations. The resulting

key size recommendations are intended for designers who want a ‘conservative’
estimate for the key sizes for various schemes over the next 20 to 30 years.

Our key size recommendations are not intended as ‘best estimates’ based
on arguments arguing for or against certain implementation-related difficulties.
Even though some of these arguments may be not without merit, they are
avoided. Basing a security argument on something that currently happens to
be perceived as a problem as opposed to basing it on the more intrinsic bigger
picture is, in our opinion, wishful thinking.

Despite our attempt to be objective we do not expect that our defaults are
to everyone’s taste. They can, however, easily be changed without affecting the
overall approach, thereby making this article useful also for those who object
to our choices or the resulting key size recommendations. Other papers con-
taining key size recommendations are [3, 5] (symmetric key cryptosystems), [29]
(RSA), [16] (RSA and elliptic curve cryptosystems), and [38] (symmetric and
asymmetric key cryptosystems). An extended abstract of this article appeared
in [22].

Although the choice of key sizes usually gets the most attention, nearly all
failures are, in our experience, not due to inadequate key sizes but to protocol
or password deficiencies. To illustrate this, the cryptographic key sizes used by
the popular email encryption program “Pretty Good Privacy” (PGP) offer an
acceptable level of security for current applications. But the user-password that
protects the private PGP keys stored on an Internet-accessible PC does not nec-
essarily offer the same security. Even if the user is relatively security-conscious
and selects a password consisting of 9 characters randomly chosen from 62 al-
phanumeric choices, the resulting security is comparable to the security offered
by the recently broken “Data Encryption Standard” and thereby unacceptable
by today’s standards.

An even more disturbing example can be found in many network configu-
rations. In one example each user may select a password that consists of 14
characters, which should, in principle, offer enough security. Before transmis-
sion over the network the passwords are encrypted, with the interesting feature
however that each password is split into two parts of at most 7 characters each,
and that each of the two resulting parts is treated separately, i.e., encrypted and
transmitted over the network. This effectively reduces the password length of 14
to 7, which is not sufficiently secure. For more examples we refer to [1]. Thus,
application of the guidelines given here makes sense only after one is convinced
of the overall security of the design, of its implementation, and of end-to-end
system engineering.

Our suggestions are based on reasonable extrapolations of developments that
have taken place during the last few decades. This approach may fail: a single
bright idea may prove that all currently popular cryptographic protocols are
considerably less effective than expected. It may even render them completely
ineffective, as shown by the following two examples. In the 1980s the then popular
knapsack-based cryptosystems were suddenly wiped out by a new type of attack.
More recently, three independent groups of researchers showed that elliptic curve

2

cryptosystems based on the use of curves of trace one are easily breakable.
In this article we discuss only cryptosystems for which it is believed to be un-

likely that such catastrophes will ever occur. Nevertheless, for some of these sys-
tems non-trivial, but non-catastrophic, new cryptanalytic insights are obtained
on a fairly regular basis. So far, a gradual increase in key sizes has been an ef-
fective countermeasure against these new insights. From an application point of
view it is to be hoped that this will not change anytime soon. It is the purpose
of this article to give an idea by how much key sizes have to be increased to
maintain a comfortable margin of security.

If sufficiently large quantum computers can be built, then all asymmetric key
cryptosystems discussed in this article are insecure [34]. It is unclear if quantum
computers are feasible at all. Our suggestions do not take quantum comput-
ers into account. Neither do we incorporate the potential effects of molecular
computing [28].

1.1.1 Remark. Many of the considerations discussed in this article, and the
default choices we make, concern parameters and issues that are at best of sec-
ondary importance. They are included for the non-specialized reader who may
not immediately be able to recognize the relative importance or potential impact
of the various issues related to key size selection.

1.2 Run Time Convention

All run time estimates in this article are based on actual run times or reliable
estimates of run times on a 450MHz Pentium II processor, at the time of writing
of this paper one of the most popular commonly available processors. A ‘PC’
always refers to this processor.

In the literature, computing power is often measured in Mips-Years, where
a Mips-Year is defined as the amount of computation that can be performed in
one year by a single DEC VAX 11/780. This measure has often been criticized
because it is unclear how it can be used in a consistent manner for processors
with instruction sets different from the VAX. We fully agree with the concerns
expressed in [37]. Nevertheless, because of its popularity and the wide acceptance
it has gained, we use this measure here as well. We use the convention that one
year of computing on a PC is equivalent to 450 Mips-Years, where it should be
kept in mind that ultimately all our estimates are based on run times on a PC
and not on the literal definition or our definition of Mips-Years. As shown in 2.2.4
the two definitions are, however, sufficiently close. Our Mips-Year figures should
therefore be compatible with Mips-Year figures found elsewhere. We write MMY
for one million Mips-Years.

1.3 Lower Bounds

The guidelines in this article are meant as lower bounds in the sense that keys
of sizes equal to or larger than the recommended sizes attain at least a certain
specified level of security. From a security point of view it is acceptable to err

3

on the conservative side by recommending keys that may be slightly larger than
actually required. Most key size guidelines in this article are therefore obtained
by systematically underestimating the computational effort required for a suc-
cessful attack. Thus, keys are estimated to be weaker than they are in reality,
which is acceptable for our purpose of finding lower bounds. In some cases slight
overestimates of the attack effort are used instead, but in those cases there are
other factors that ensure that the desired level of security is achieved.

1.4 Equivalence of Attack Efforts

We present key size recommendations for several different cryptosystems. For a
certain specified level of security these recommendations may be expected to be
equivalent in the sense that the computational effort or number of Mips-Years
(Subsection 1.2) for a successful attack is more or less the same for all cryptosys-
tems under consideration. So, from a computational point of view the different
cryptosystems offer more or less equivalent security when the recommended key
sizes are used.

This computationally equivalent security should not be confused with, and is
not necessarily the same as, security with equivalent cost of equipment, or cost-
equivalent security for short. Here we say that two systems offer cost-equivalent
security if accessing or acquiring the hardware that allows a successful attack
in a certain fixed amount of time costs the same amount of dollars for both
systems. Note that although the price is the same, the hardware required may
be quite different for the two different attacks; some attacks may use PCs, for
other attacks it may be possible to get the required Mips-Years relatively cheaply
by using special-purpose hardware. Following our guidelines does not necessarily
result in cost-equivalent security. In 3.2.5 and Subsection 4.5 we indicate how our
guidelines may be changed to obtain cost equivalence, thereby possibly giving
up computational equivalence.

There are at least two reasons why we use computationally equivalent se-
curity as opposed to cost-equivalent security. Most importantly, we found that
computational equivalence allows rigorous analysis, mostly independent of our
own judgment or preferences. Analysis of cost equivalence, on the other hand,
depends on subjective choices that change over time, and that have a consider-
able effect on the outcome. Thus, for cost equivalence there is a whole spectrum
of ‘reasonable’ outcomes, depending on one’s perception of what is reasonable.
In Subsection 4.5 we present three points of the spectrum.

Another reason why we restricted ourselves to computational equivalence is
that, in the model we have adopted, we need a workable notion of equivalence to
achieve our goal of determining acceptable key size recommendations – achieving
any type of equivalence in itself has never been our goal. Whether or not the
resulting recommendations are indeed acceptable depends on how acceptable our
model is found to be.

1.4.1 Remark on published versus unpublished attacks. The analyses in
this paper are often based on recently published cryptanalytic results. But, as

4

can be seen below (in particular in 3.1.2), we never use these published results
to assess the security of cryptographic systems, only to derive data about the
computational effort involved in a successful attack. Thus, arguments such as ‘a
512-bit RSA key was broken only in 1999 (cf. 2.4.6), so 1024-bit RSA keys must
be safe for quite a while’ are not used in this article [38]. Does anyone seriously
believe that published attacks represent the state of the art? It may safely be
assumed that unpublished work is many years ahead of what the public at large
gets to see: a public announcement that a system is broken provides at best a
rather trivial upper bound – and a very simple-minded one, in our opinion – for
the date that the system became vulnerable. This is illustrated in Remark 3.1.8.
See also 2.4.5 and 3.1.3.

1.5 Organization of this Paper

In Section 2 we describe the cryptographic primitives for which we derive key
size recommendations, namely the cryptographic primitives that are mentioned
in the Wassenaar Arrangement (Subsection 2.1). In Section 3 we present the
model underlying our key size recommendations. The model is based on a num-
ber of variables that parametrize environmental factors affecting the security or
perceived security of key size choices. The role of the parameters is described
and conservative default settings are suggested.

In Section 4 we apply the model from Section 3 to the cryptographic prim-
itives from Section 2. This results in a number of formulas from which, for in-
stance with the default settings, key size recommendations can be derived. In
Section 5 we discuss some of the implications of our key size recommendations.

2 Cryptographic Primitives

2.1 The Wassenaar Arrangement

The Coordinating Committee for Multilateral Export Controls (COCOM) was
an international organization regulating the mutual control of the export of
strategic products, including cryptographic products, from member countries to
countries that jeopardize their national security. Member countries, e.g. Euro-
pean countries and the US, implemented the COCOM regulations in national
legislation (e.g. the ITAR in the US).

The Wassenaar Arrangement is a follow-up of the COCOM regulations. The
current restrictions in the Wassenaar Arrangement (December 1998) with re-
spect to cryptography are rather detailed [42]. For five types of cryptographic
primitives a maximum key size is given for which export does not require a li-
cense. Due to the nature of the Wassenaar Arrangement, it is not surprising that
it turns out that these key sizes do not provide for adequate protection of the
majority of commercial applications.

In this article we limit ourselves to these cryptographic primitives. In the
remainder of this section we review for each of these cryptographic primitives
some facts and data that are relevant for our purposes:

5

– A brief description.
– The key size recommendation from the Wassenaar Arrangement.
– The most important known (i.e., published) attacks.
– The effectiveness of those attacks using generic software implementations.
– The effectiveness of those attacks using special-purpose hardware.
– The effectiveness of guessing (Remark 1.1.1).
– The effectiveness of incomplete attacks (Remark 1.1.1).
– Past cryptanalytic progress.

We distinguish the cryptographic primitives into symmetric key (or secret key)
and asymmetric key (or public key) cryptosystems. Such systems are instrumen-
tal to build e-commerce enabling solutions and, more specifically, can be used to
achieve confidentiality, integrity, authenticity, and non-repudiation of electronic
information. For simplicity we assume two communicating parties, a sender S
and a receiver R, who want to maintain confidentiality of the communication
from S to R. At the end of the section we briefly mention cryptographic hash
functions as well.

2.2 Symmetric Key Cryptosystems

2.2.1 Description. In symmetric key cryptosystems S and R share a key. To
maintain confidentiality the key should be kept secret. The size of the key, i.e.,
its number of bits, depends on the symmetric key cryptosystem. Often both the
message and its encryption consist of a whole number of blocks, where a block
consists of a fixed number of bits that depends on the symmetric key cryp-
tosystem. The best-known symmetric key cryptosystem is the Data Encryption
Standard (DES), introduced in 1977, with key size 56 bits and block size 64 bits.
Other examples of symmetric key cryptosystems are:

– Two Key Triple DES (key size 112, block size 64);
– IDEA (key size 128, block size 64);
– RC5 (variable key and block sizes);
– The forthcoming Advanced Encryption Standard (AES), with key sizes of

128, 192, or 256 bits and block size 128.

2.2.2 Wassenaar Arrangement. The maximum symmetric key size allowed
by the Wassenaar Arrangement is 56 bits for ‘niche market’ applications and 64
bits for ‘mass market’.

2.2.3 Attacks. Despite many years of research, no method has been published
that breaks a DES-encrypted message substantially faster than exhaustive key
search, i.e., trying all 256 different keys. The expected number of trials of ex-
haustive key search is 255.

2.2.4 Software data points. Nowadays the DES is not considered to be suf-
ficiently secure. In 1997 a DES key was successfully retrieved after an Inter-
net search of approximately 4 months ([31] and Remark 3.1.3). The expected

6

computing power required for such a software exhaustive key search is underes-
timated as 0.5 MMY (Subsection 1.2). This estimate is based on the Pentium
based figures that a single DES block encryption with a fixed key requires 360
Pentium clock cycles [8] or 500 Pentium clock cycles with a variable key [2].
Furthermore, our estimate lies between two DEC VAX 11/780 estimates that
can be found in [9, 29]. It follows that our Mips-Years convention is sufficiently
accurate.

Half a million Mips-Years is roughly 13,500 months on a PC. This is equiva-
lent to 4 months on 3,500 PCs, because an exhaustive key search can be evenly
divided over any number of processors. For a proper security analysis one there-
fore has to evaluate and keep track of the total computational power of the
Internet.

2.2.5 Special-purpose hardware data points. At the cost of a one-time
investment a hardware attack is substantially faster than a software attack.
In 1977 a 20 million dollar parallel DES key searching machine was proposed
with an expected search time of 12 hours [11]. We write ‘[$20 million, 12 hours,
1977]-hardware’ for this design. In [10] it was corrected to [$50 million, 2 days,
1980]-hardware. Mike Wiener published a detailed [$1 million, 3.5 hours, 1993]-
hardware design [43], and special purpose [$130,000, 112 hours, 1998]-hardware
was actually built [19]; see also [13].

2.2.6 Effectiveness of guessing. There is always the possibility that someone
may find a key simply by guessing it. For reasonable key sizes the probability
that this happens is small: even for a 50-bit key there is a total probability of
one in a million that it is found if one billion people each make a different guess.
With the same effort, the probability of success halves for each additional key
bit: for a 60-bit key it becomes only one in a billion. Note that exhaustive key
search is nothing more than systematic guessing.

2.2.7 Incomplete attacks. The success probability of exhaustive key search is
proportional to the fraction of the key space searched; i.e., for any x, 0 ≤ x ≤ 1,
the chance is x that the key is found after searching a fraction x of the key space.

2.2.8 Cryptanalytic progress. We assume no major changes, i.e., that future
symmetric key cryptosystem designs do not allow faster attacks than exhaustive
key search. Also, we assume that a design that turns out to allow a faster attack
will no longer be used. Below we assume the existence of a generic symmetric
key cryptosystem of arbitrary key size for which exhaustive key search is the
best attack. It follows that for a b-bit key a successful attack can be expected to
require on the order of 2b−1 invocations of the underlying function.

2.3 Asymmetric Key Cryptosystems Overview

In asymmetric key cryptosystems the receiver R has a private key (which R keeps
secret) and a corresponding public key that anyone, including S, has access to.
The sender S uses R’s public key to encrypt information intended for R, and R

7

uses its private key to decrypt the encrypted message. If the private key can be
derived from the public key, then the system can be broken. What the private
and public keys consist of, and how hard it is to break the system, depends on
the type of asymmetric key cryptosystem. For cryptanalytic and historic reasons
we distinguish the following three types:

1. Classical asymmetric systems;
2. Subgroup discrete logarithm systems;
3. Elliptic curve systems.

These three types of systems are discussed in more detail in the next three
subsections.

2.4 Classical Asymmetric Systems

Classical Asymmetric Systems refer to RSA, due to Rivest, Shamir, and Adle-
man, and traditional discrete logarithm systems, such as the Diffie-Hellman and
ElGamal schemes.

2.4.1 RSA description. In RSA the public key contains a large non-prime
number, the so-called RSA modulus. It is chosen as the product of two large
primes. If these primes can be found then the private key can be found, thereby
breaking the system. Thus, the security of RSA is based on the difficulty of the
integer factorization problem (cf. 2.4.10). The size of an RSA key refers to the
bit-length of the RSA modulus. This should not be confused with the actual
number of bits required to store an RSA public key, which may be slightly more.

2.4.2 TDL description. In a traditional discrete logarithm (TDL) system
the public key consists of a finite field GF(p) of size p, a generator g of the
multiplicative group GF(p)∗ of GF(p), and an element y of GF(p)∗ that is not
equal to 1. We assume that the field size p is such that p−1 has a prime factor of
roughly the same order of magnitude as p. The private key is the smallest positive
integer m such that gm = y. This m is referred to as the discrete logarithm of y
with respect to g. The private key m is at least 1 and at most p − 2. If m can
be found, the system can be broken. Thus, the security of TDL systems is based
on the difficulty of computing discrete logarithms in the multiplicative group of
a finite field. The size of a TDL key refers to the bit-length of the field size p.
The actual number of bits required to store a TDL public key is larger, since the
public key contains g and y as well.

2.4.3 Wassenaar Arrangement. Both the maximal RSA modulus size and
the maximal field size allowed by the Wassenaar Arrangement are 512 bits, i.e.,
RSA moduli and p as above should be less than 2512.

2.4.4 Attacks. Factoring an RSA-modulus n by exhaustive search amounts to
trying all primes up to

√
n. Finding a discrete logarithm by exhaustive search

requires on the order of p operations in GF(p). Thus, if exhaustive search were

8

the best attack on these systems, then 112-bit RSA moduli or 56-bit p’s would
give security comparable to the DES. However, there are much more efficient
attacks than exhaustive search and much larger keys are required. Surprisingly,
the methods to attack these two entirely different problems are similar, and for
this reason we treat RSA and TDL systems as the same category.

The fastest factoring algorithm published today is the Number Field Sieve,
invented in 1988 by John Pollard. Originally it could be used only to factor
numbers of a special form, such as the ninth Fermat number 2512 + 1 (factored
in 1990). This original version is currently referred to as the Special Number Field
Sieve (SNFS) as opposed to the General Number Field Sieve (NFS), which can
handle numbers of arbitrary form, including RSA moduli. On heuristic grounds
the NFS can be expected to require time proportional to

e(1.9229+o(1)) ln(n)1/3ln(ln(n))2/3
(1)

to factor an RSA modulus n, where the o(1) term goes to zero as n goes to infin-
ity. For notational convenience we refer to (1) as L[n], which is an abbreviated
version of the more common definition

L[n, u, v] = e(v+o(1)) ln(n)uln(ln(n))1−u

. (2)

The run time L[n] is called subexponential in the input size n because as n goes
to infinity it is less than nc for any constant c > 0. The storage requirements
of the NFS are proportional to

√
L[n]. The expected run time of the SNFS is

L[n, 1/3, 1.5262]; thus, the SNFS is much faster than the NFS, but it cannot be
used to attack RSA moduli. If p is a prime number then a discrete logarithm
variation of the NFS, which we refer to as ‘DLNFS’, finds a discrete logarithm
in GF(p) in expected time proportional to L[p].

These run time estimates – with omission of the o(1) as is customary – cannot
be used directly to estimate the number of operations required to factor a certain
n or to compute discrete logarithms in a certain GF(p). For instance, the discrete
logarithm problem in GF(p) is considerably more difficult than factoring an n
of about the same size as p, but L[p] and L[n] are approximately equal if the
o(1)’s are omitted. However, as shown by extensive experiments, the estimates
can be used for limited range extrapolation. If one knows, by experimentation,
that factoring an RSA modulus n using the NFS takes time t, then factoring
some other RSA modulus m > n will take time close to tL[m]

L[n] (omitting the
o(1)’s), if the sizes of n and m do not differ by too much, say by not more than
100 bits. If, however, m is much bigger than n, then the effect of the o(1) going
to zero can no longer be ignored, and tL[m]

L[n] will be an overestimate of the time to
factor m [36]. The same run time extrapolation method applies to the DLNFS.

2.4.5 NFS background. For a better appreciation of the security offered by
classical asymmetric systems when comparing them to other asymmetric sys-
tems, we describe a few more details of the NFS. It consists of two major steps,
a sieving step and a matrix step, which in theory both take an equal amount of

9

computing time as n goes to infinity. For numbers in our current range of inter-
est (say, up to 700 bits), however, the matrix step takes only a fraction of the
computing time of the sieving step. The sieving step can be evenly distributed
over any number of processors, with hardly any need for communication, result-
ing in a linear speedup. The computing power required for the sieving step of
large scale factorizations can in principle quite easily be obtained on any loosely
coupled network of computers such as the Internet. The matrix step on the other
hand does not allow such a straightforward parallelization.

The situation is worse for the DLNFS. Although, as in the NFS, the DLNFS
sieving and matrix steps are in theory equally hard, the DLNFS matrix step is
several orders of magnitude more time- and memory-consuming than the NFS
matrix step. Currently the matrix step is considered to be the major bottleneck
obstructing substantially larger factorizations or even mildly interesting discrete
logarithm computations. Efforts are underway to implement it on a fast and
high-bandwidth network of PCs. Even though the effectiveness of that approach
is still uncertain, early experiments look encouraging [24, 39] and there is no
reason to believe that parallelization of the matrix step will not be successful.

It is tempting to use the perceived difficulty and apparent ‘unparallelizabil-
ity’ of the matrix step as an argument in favor of RSA keys smaller than solely
based on the estimated computational cost of breaking them. It is unclear to
us, however, how this perceived difficulty should be factored in, and, more im-
portantly, we find it imprudent to do so because it is unlikely that it will last.
Indeed, there are strong and consistent indications that very fast networks of
rather large PCs have been designed, and may even have been built, that would
be able to tackle matrices that are very far out of reach for generally accessible
computer systems. In this context we repeat (Remark 1.4.1) that it is näıve to
believe that the published factorization of a 512-bit RSA modulus referred to
in 2.4.6 below is the best one can do at this point (see also 3.1.2).

2.4.6 Software data points. The largest published factorization using the
NFS is that of the 512-bit number RSA155, which is an RSA modulus of 155
decimal digits, in August of 1999 [6]. This factoring effort was estimated to cost
at most 20 years on a PC with at least 64Mbytes of memory (or a single day
on 7500 PCs). This time was spent almost entirely on the sieving step. It is less
than 104 Mips-Years and corresponds to fewer than 3 ∗ 1017 operations, whereas
L[10155] = 2 ∗ 1019 (omitting the o(1)). This shows that L[n] overestimates the
number of operations to be carried out for the factorization of n. The run time
given here is the actual run time of the RSA155 factoring effort and should not
be confused with the estimates given in [37], which appeared around the same
time; these estimates are 100 times too high [26]. The largest number factored
using the SNFS is the 233-digit (and 773-bit) number 2773 + 1, in November of
2000, in less than 17, 000 Mips-Years. These run times are only a fraction of the
cost of a software DES key search, but the amount of memory needed by the
NFS is several orders of magnitude larger.

Practical experience with the DLNFS is still limited. It is generally accepted
that, for any b up to about 500, factoring b-bit integers takes about the same

10

amount of time as computing discrete logarithms in (b−x)-bit fields, where x is a
small constant around 20. For b going to infinity there is no distinction between
the hardness of b-bit factoring and b-bit discrete logarithms. Below we do not
present separate key size suggestions for TDL systems and we recommend using
the RSA key size suggestions for TDL systems as well.

2.4.7 Special-purpose hardware data points. Special-purpose hardware
devices are occasionally proposed for the most time consuming step of factoring
algorithms such as the sieving step of the NFS, but no useful data points have
been published. Recently, Adi Shamir proposed the TWINKLE opto-electronic
sieving device [33, 21]. This device, if feasible at all, does not affect the asymp-
totic run time of the NFS, nor does it affect the matrix step.

Due to the complexity of the underlying factorization algorithms and the cor-
responding hardware design for any special-purpose hardware factoring device,
it would be difficult to achieve parallelization at a reasonable cost and at a scale
comparable to hardware attacks on the DES, but it may not be impossible. Also,
by the time a special-purpose design could be operational it is conceivable that
it would no longer be competitive due to new algorithmic insights and faster
general-purpose processors. Given the current state of the art we consider it to
be unlikely that special-purpose hardware will have a noticeable impact on the
security of RSA moduli.

But we find it imprudent to ignore the possibility altogether, and warn
against too strong a reliance on the belief that special-purpose attacks on RSA
are impossible. To illustrate this, the quadratic sieve factoring method was im-
plemented successfully on a Single-Instruction-Multiple-Data architecture [12].
A SIMD machine is by no means special-purpose hardware, but it could be
relatively cheap compared to ordinary PCs.

2.4.8 Effectiveness of guessing. Obviously, key sizes for classical asymmetric
systems have to be larger than 512 to obtain any security at all (where 512 is the
size of the ‘broken’ RSA modulus RSA155; cf. 2.4.6). It may safely be assumed
that breaking the system by guesswork is out of the question: it would require at
least 254 correctly guessed bits for RSA or 512 bits for TDL. So, from this point
of view, classical asymmetric systems seem to be more secure than symmetric
key cryptosystems. For RSA there is more to this story, as shown in 2.4.9 below.

2.4.9 Incomplete attacks. Both the NFS and the DLNFS are effective only
if run to completion. There is no chance that any results will be obtained early.
RSA, however, can also be attacked by the Elliptic Curve Method (ECM). After a
relatively small amount of work this method produces a factor with substantially
higher probability than mere guesswork. To give an example, if one billion people
were to attack a 512-bit RSA modulus, each by running the ECM for just one
hour on their PC, then the probability that one of them would factor the modulus
is more than 10%. For a 768-bit RSA modulus the probability of success of the
same computational effort is about one in a million. Admittedly, this is a very
low success probability for a tremendous effort – but the success probability is

11

orders of magnitude larger than guessing, while the amount of work is of the
same order of magnitude. No discrete logarithm equivalent of the ECM has been
published. The details of our ECM run time predictions are beyond the scope of
this article. See also Subsection 5.9.

2.4.10 Cryptanalytic progress. Classical asymmetric systems are the prime
example of systems for which the effectiveness of cryptanalysis is steadily improv-
ing. Roughly speaking the effect of algorithmic improvements over the last 25
years turned out to be comparable to the effect of faster hardware; cf. Re-
mark 4.3.1.2.

The current state of the art of factoring (and discrete logarithm) algorithms
should not be interpreted as the culmination of many years of research but is
just a snapshot of work in progress. It may be due to the relative complexity
of the methods used that so many more or less independent improvements and
refinements have been made and – without any doubt – will be made. We illus-
trate this point with a list of some of the developments since the early seventies,
each of which had a substantial effect on the difficulty of factoring or com-
puting discrete logarithms: continued fraction method, linear sieve, quadratic
sieve, multiple polynomial variation, Gaussian integers, loosely coupled paral-
lelization, multiple large primes, special number field sieve, structured Gaussian
elimination, number field sieve, singular integers, lattice sieving, block Lanczos
or conjugate gradient, sieving-based polynomial selection for the NFS, and, most
recently, parallelized block Lanczos. We find it reasonable to assume that this
trend of continuous algorithmic developments will continue in the years to come.

It has never been proved that breaking RSA is equivalent to factoring the
RSA modulus. Indeed, for RSA there is evidence that the equivalence does not
hold if the so-called public exponent (another part of the RSA public key) is
small. We therefore introduce the explicit assumption that breaking RSA is
equivalent to factoring the RSA modulus. Based on recent results in this area the
public exponent for RSA must be sufficiently large. Values such as 3 and 17 can
no longer be recommended, but commonly used values such as 216 + 1 = 65537
still seem to be fine. If one prefers to stay on the safe side one may select an odd
32-bit or 64-bit public exponent at random.

Furthermore we restrict ourselves to TDL based protocols for which attacks
are provably equivalent to either computing discrete logarithms or solving the
Diffie-Hellman problem – the problem of finding gab given ga and gb for known g
(but unknown a and b). There is strong evidence that the latter problem is
equivalent to computing discrete logarithms. We explicitly exclude, however,
TDL based protocols that rely on the so-called Decision Diffie-Hellman problem
– the problem of distinguishing gab from gc when g, ga, gb, gab, and gc for a
random c are given [18].

2.5 Subgroup Discrete Logarithm Systems

2.5.1 Description. Subgroup discrete logarithm (SDL) systems are like tradi-
tional discrete logarithm systems, except that g generates a relatively small, but

12

sufficiently large, subgroup of the multiplicative group GF(p)∗, an idea due to
Schnorr. The size of the subgroup is prime and is indicated by q. The private
key m is at least 1 and at most q − 1. The security of SDL is based on the
difficulty of computing discrete logarithms in a subgroup of the multiplicative
group of a finite field. These can be computed if discrete logarithms in the full
multiplicative group can be computed. Therefore, the security of an SDL system
relies on the sizes of both q and p. Nevertheless, the size of an SDL key simply
refers to the bit-length of the subgroup size q, where the field size p is given by
the context. The actual number of bits required to store an SDL public key is
substantially larger than the SDL key size q, since the public key contains p, g
and y as well.

2.5.2 Wassenaar Arrangement. The maximum SDL field size allowed by the
Wassenaar Arrangement is 512 bits – there is no maximum allowed key size. A
popular subgroup size is 160 bits. That choice is used in the US Digital Signature
Algorithm, with field sizes varying from 512 to 1024 bits.

2.5.3 Attacks. Methods that can be used to attack TDL systems also can be
used to attack SDL systems. The field size p should therefore satisfy the same
security requirements as in TDL systems. But the subgroup discrete logarithm
problem can also be attacked directly by Pollard’s rho method, which dates from
1978, and by Shanks’ even older baby-step-giant-step method. These methods
can be applied to any group, as long as the group elements allow a unique
representation and the group law can be applied efficiently – unlike the DLNFS
it does not rely on any special properties that group element representations may
have. The expected run time of Pollard’s rho method is exponential in the size
of q, namely 1.25

√
q group operations, i.e., multiplications in GF(p). Its storage

requirements are very small. Shanks’ method needs about the same number of
operations but needs storage for about

√
q group elements.

Pollard’s rho method can easily be parallelized over any number of proces-
sors, with very limited communication, resulting in a linear speedup [40]. This
is another illustration of the power of parallelization and another reason to keep
track of the computational power of the Internet. Furthermore, there is no post-
processing involved in Pollard’s rho (unlike the (DL)NFS, where after completion
of the sieving step the cumbersome matrix step has to be carried out), although
for the parallelized version substantial amounts of storage space should be avail-
able at a central location.

2.5.4 Data points. We have not been able to find any useful data about the
effectiveness of an attack on SDL systems using the parallelized version of Pol-
lard’s rho method. Our figures below are based on an adaptation of data points
for elliptic curve systems. This is described in detail in 4.2.5.

2.5.5 Effectiveness of guessing. As long as SDL keys are not shorter than
the 112 bits permitted by the Wassenaar Arrangement for EC systems (cf. 2.6.2),
guessing the private key requires guessing at least 112 bits, which may safely be
assumed to be infeasible.

13

2.5.6 Incomplete attacks. The success probability of Pollard’s rho method
is, roughly speaking, proportional to the square of the fraction of the work per-
formed, i.e., for any x, 0 ≤ x ≤ 1, the chance is x2 that the key is found after
performing a fraction x of the expected 1.25

√
q group operations. So, doing ten

percent of the work yields a one percent success rate.

2.5.7 Cryptanalytic progress. Since the invention of Pollard’s rho method
in 1978 no new results have been obtained that threaten SDL systems, with the
exception of the efficient parallelization of Pollard’s rho method in 1996. The only
reasonable extrapolation of this rate of algorithmic progress is to assume that
no substantial progress will be made. Progress would almost necessarily imply
an entirely new approach and may instantaneously wipe out all practical SDL
systems. The results in [27, 35] that, in a certain generic model of computation,
Pollard’s rho method is essentially the best one can do may be comforting in this
context. It should be kept in mind, however, that the generic model does not
apply to any practical situation that we are aware of, and that the possibility of
a subexponential attack against SDL systems cannot be ruled out.

2.6 Elliptic Curve Systems

2.6.1 Description. Elliptic curve (EC) systems are like SDL systems, except
that g generates a subgroup of the group of points on an elliptic curve E over a
finite field GF(p), an idea independently due to Koblitz and Miller. The size q
of the subgroup generated by g is prime and the private key m is in the range
[1, q − 1].

The security of EC systems is based on the difficulty of computing discrete
logarithms in the subgroup generated by g. These can be computed if discrete
logarithms in the full group of points on an elliptic curve over a finite field can
be computed. This problem is known as the ECDL problem. No better method
to solve the ECDL problem is known than by solving the problem in all cyclic
subgroups and by combining the results. The difficulty of the ECDL problem
therefore depends on the size of the largest prime divisor of the order of the
group of points of the curve (which is close to p). For that reason, p, E, and q
are usually chosen such that the sizes of p and q are close. Thus, the security
of EC systems relies on the size of q, and the size of an EC key refers to the
bit-length of the subgroup size q. The actual number of bits required to store
an EC public key may be substantially larger than the EC key size q, since the
public key contains p, E, g, and y as well.

A description of the group of points on an elliptic curve over a finite field and
how such points are represented or operated upon is beyond the scope of this
article. Neither do we discuss how appropriate elliptic curves and finite fields
can or should be selected.

2.6.2 Wassenaar Arrangement. The maximum EC key size allowed by the
Wassenaar Arrangement is 112 bits, with unspecified field size. For prime fields

14

a popular size is 160 bits both for the field size and the subgroup size. For non-
prime fields an example of a commercially available choice is p = 2163 with a
161-bit q.

2.6.3 Attacks. A DLNFS equivalent or other subexponential method to attack
EC systems has never been published. The most efficient method published
to attack EC systems is Pollard’s parallelizable rho method, with an expected
run time of 0.88

√
q group operations. This run time is exponential in the size

of q. The expected number of iterations is a factor
√

2 smaller than for SDL
systems, due to the result independently described in [15, 46]. If field inversions
are properly handled, the average number of field multiplications per group
operation is approximately 12 [14].

2.6.4 Software data points. Because p and q are assumed to be of the same
order of magnitude the cost of the group operation is proportional to (log2(q))2.
Data about the effectiveness of an attack using Pollard’s rho method can be
found in [7]. From the estimates given there we derive that a 109-bit EC system
with p = 2109 should take about 18,000 years on a PC (or, equivalently, one
year on 18,000 PCs) which is about 8 MMY. This computation is feasible on a
large network of computers. It also follows from [7] that an attack on a 109-bit
EC system with a prime p of about 109 bits should take about 2.2 MMY. This
is an underestimate because it is based on primes of a special form and thus
overly optimistic for general primes [14]. Nevertheless, it is used as the basis for
extrapolations to estimate the effort required for software attacks on larger EC
systems over prime fields (Subsection 1.3).

2.6.5 Special-purpose hardware data points. In 1996 an attack against
a 120-bit EC system with p = 2155 was sketched (and published 3 years later,
cf. [40]) based on a special-purpose hardware design that achieves a 25 million
fold parallelism, i.e., 330,000 special-purpose processor chips each running 75
independent Pollard rho processes. Building this machine would cost 10 mil-
lion dollar and its run time would be about 32 days. The designers claim that
an attacker can do better by using current silicon technology and that further
optimization may be obtained from pipelining. On the other hand, in [7] it is
mentioned that 131-bit EC systems ‘are expected to be infeasible against realis-
tic software and hardware attacks’, where 131-bit systems over 131-bit fields are
about 32 times harder to break than 120-bit systems over 155-bit fields. This
shows that there is no clear distinction between which computations are consid-
ered to be feasible and which are not, and that drawing a conclusion from a cost
evaluation is mostly a matter of personal taste and preferences (cf. 3.1.2). The
pipelined design is further considered in Subsection 3.2.

2.6.6 Effectiveness of guessing. As long as EC keys are not shorter than
the 112 bits permitted by the Wassenaar Arrangement, guessing the private key
requires guessing at least 112 bits, which may safely be assumed to be infeasible.

15

2.6.7 Incomplete attacks. As with Pollard’s rho attack against SDL systems,
the chance is x2 that the key is found after performing a fraction x of the expected
0.88

√
q group operations.

2.6.8 Cryptanalytic progress. With the exception of the result from [15,
46], no progress threatening the general ECDL problem has been made since
the invention of Pollard’s rho method in 1978 and its parallelization in 1996
(cf. 2.5.7). The key word here is ‘general’, because EC related cryptanalytic
results are obtained quite regularly. So far these results mostly affect, or rather
‘wipe out’, special cases, e.g. curves for which the order of the group of points or
the underlying finite field have special properties. For the non-specialized user
this is hardly comforting: EC systems are relatively complicated and designers
often apply special cases to avoid nasty implementation problems.

We make the explicit assumption that curves are picked at random, i.e., that
special cases are not used, and that only curves over prime fields are used. Based
on this assumption and the lack of cryptanalytic progress affecting such curves
it is not unreasonable to assume that there will be no substantial progress in
the years to come. It is, however, not hard to find researchers who find that EC
systems have not been around long enough to fully trust them and that the rich
mathematical structure of elliptic curves may still have some surprises in store.
Others argue that the ECDL problem has been studied extensively, and that
the lack of progress affecting well-chosen EC systems indicates that they are
sufficiently secure. We do not want to take a position in this argument but note
that some recent developments [17, 41] seem to support the former standpoint.

For the purposes of the present paper, we simply suggest two key sizes for EC
systems: one based on ‘no cryptanalytic progress’ and one based on ‘cryptana-
lytic progress at a rate comparable to RSA and TDL systems’, the latter despite
our fear or conviction that any new cryptanalytic insight against EC systems,
such as a subexponential method, may prove to be fatal. The reader may then
interpolate between the two types of extrapolations according to her own taste.

2.7 Cryptographic Hash Functions

2.7.1 Description. A cryptographic hash function is a function that maps
an arbitrary length message to a fixed length ‘hash’ of the message, satisfying
various properties that are beyond the scope of this article. The size of the hash
function is the length in bits of the resulting hash. Examples of cryptographic
hash function are MD4, MD5 (both of size 128), SHA-1, RIPEMD-160 (both of
size 160), and, most recently, SHA-256 (of size 256).

2.7.2 Attacks. We assume that a successful attack against a cryptographic
hash function consists of finding s and t with s 6= t such that the hashes of
s and t are the same. If such s and t cannot be found the hash function is
called ‘collision-resistant’. For hash functions that are only required to be ‘target
collision-resistant’ (i.e., it is supposed to be infeasible to find an s that hashes to
a given target hash value), the sizes may be halved assuming the hash function

16

is properly used. Cryptographic hash functions can be attacked by the so-called
birthday paradox attack. The number of hash function applications required by
a successful attack is expected to be proportional to 2x/2, where x is the size of
the hash function.

2.7.3 Software data points. In [4] 241, 345, 837, and 1016 Pentium cycles are
reported for MD4, MD5, SHA-1, and RIPEMD-160, respectively. This compares
to 360 to 500 cycles for the DES depending on fixed or variable keys, as reported
in [2, 8] (cf. 2.2.4). Thus, the software speed of a hash function application as
used by a birthday paradox attack is comparable to the software speed of a single
DES block encryption.

2.7.4 Special-purpose hardware data points. Special-purpose hardware
has been designed for several hash functions. We may assume that their speed
is comparable to the speed of special-purpose exhaustive key search hardware.

2.7.5 Cryptanalytic progress. We assume the existence of a generic crypto-
graphic hash function for which the birthday paradox attack is the best attack.
If a proposed design allows a faster attack, we assume that it will no longer
be used. We assume that an exhaustive key search attack on our generic sym-
metric key cryptosystem of key size b can be expected to take about the same
time as a birthday paradox attack on our generic cryptographic hash function
of size 2b. Thus, a lower bound for the size of cryptographic hash functions fol-
lows by doubling the lower bound for the size of symmetric key cryptosystems.
Because of this simple ‘rule of thumb’, sizes of cryptographic hash functions are
not discussed in the sequel. If speeds differ, adjust accordingly.

3 The Model

3.1 Key points

In this subsection we present the four points on which the choice of cryptographic
key sizes depends primarily:

1. Life span: the expected time the information needs to be protected.
2. Security margin: an acceptable degree of infeasibility of a successful attack.
3. Computing environment: the expected change in computational resources

available to attackers.
4. Cryptanalysis: the expected developments in cryptanalysis.

Efficiency and storage considerations concerning the cryptographic keys may also
influence the choice of key sizes, but since they are not directly security-related
they are not discussed here.

3.1.1 Life span. In the table in the next section key sizes are suggested for the
cryptosystems discussed in Section 2, depending on the expected life span of the
cryptographic application. It is the user’s responsibility to decide until what year

17

the protection should be effective, or how the expected life span corresponds to
popular security measures such as ‘short-term’, ‘medium-term’, or ‘long-term’
security. The user’s decision may depend on the value of the data to be encrypted.

3.1.2 Security margin. A cryptosystem can be assumed to be secure only if
it is considered to be sufficiently infeasible to mount a successful attack. Unfor-
tunately, it is hard to quantify what precisely is meant by ‘sufficiently infeasible’
(cf. 2.6.5). One could, for instance, decide that a key size for a certain cryp-
tosystem is secure for current applications if breaking it would be, say, 106 times
harder than the largest key size that can currently be broken for that cryptosys-
tem. There are several problems with this approach.

First of all, the choice 106 is rather arbitrary. Secondly, it is näıve to believe
that the largest published key broken so far accurately represents the best that
can currently be done (Remark 1.4.1). In the third place, for some of the cryp-
tographic primitives considered here data may not be available (TDL, cf. 2.4.6,
and SDL, cf. 2.5.4), or they may be outdated, thereby ruling out uniform ap-
plication of this approach. Finally, the problem of any fixed security margin is
that there are always users who prefer a different choice. We opt for a different
approach by offering a flexible choice of security margin.

Definition I. The security margin s is defined as the year until which a user
was willing to trust the DES.

The rationale for this definition of security margin is that the security offered
by the DES is something most users can relate to, for instance because their
company used the DES until a certain year. Furthermore, different choices of s
allow us to satisfy different security needs. Another advantage of our choice of
security margin is discussed in Remark 3.1.4.

The DES was introduced in 1977 and stipulated to be reviewed every five
years. We therefore assume that the DES was at least sufficiently secure for
commercial applications until 1982.

Default Setting I. Our default setting for s is s = 1982.

Our default setting for s assumes that in 1982 a computational effort of 0.5 MMY
provided an adequate security margin for commercial DES applications against
software attacks (cf. 2.2.4). As far as hardware attacks are concerned, the DES
key searching [$50 million, 2 days, 1980]-hardware (cf. 2.2.5) was not a serious
threat for commercial applications of the DES at least until 1982. We stress
‘commercial applications’ because, even for 1980 budgets, 50 million dollar and
2 days were by no means an insurmountable obstacle for certain organizations.
Our default setting for s is further discussed below (Remark 3.1.8). Although
all our results are based on the default setting s = 1982, they can easily be
adapted to produce key size recommendations for any other reasonable value
of s. In Subsection 4.4 it is indicated how this can be done.

The maximal value of a ‘commercial application’ of the DES, either back in
1982 or right now, is the value of the company encrypting the data. Thus, over

18

time there is no intrinsic difference between the possible value of commercial
applications of the DES. As businesses move online the number of commercial
applications is increasing, but volume is not a security factor. A concept of ‘value’
is therefore not directly incorporated in our model, but value can be compared
to the cost of an attack using our notion of ‘cost equivalence’ (Subsection 4.5
and the second to last column of Table 1). See also 3.1.1. We are grateful to an
anonymous referee for suggesting us to clarify this point.

3.1.3 Remark on security margin. A particular choice for s does not imply
that the DES is thought to be vulnerable from year s on [38]; it means that
the user who picked s is willing to trust the DES until the year s. Of course,
any responsible user maintains a comfortable margin between the moment until
which she is willing to use a system and the moment when she believes the
system to be vulnerable. It is baffling that anyone would seriously believe [38]
that the DES was not actually broken until 1997, the year that it was publicly
demonstrated (Remark 1.4.1 and 3.1.8).

3.1.4 Remark on security margin and incomplete attacks. It should be
understood that our definition of security margin (Definition I) also takes into
account the probability of success of incomplete attacks. Indeed, trusting the
DES implies that one finds it to be sufficiently resistant to all types of potential
attackers. That is, the whole spectrum between, on the one hand, attackers that
search a fraction close to 1 of the key space and, on the other hand, attackers
that search a fraction close to 0 of the key space. The former is assumed to be
too expensive to carry out, and for the latter it is assumed that the probability
of success is too low.

Note that the success probability of exhaustive key search is proportional
to the fraction of the key space searched (cf. 2.2.7), but that for Pollard’s rho
method the probability of success is only proportional to the square of the frac-
tion of the work performed (cf. 2.5.6 and 2.6.7). Therefore, an incomplete attack
against EC or SDL systems has a smaller probability of success than a simi-
larly incomplete attack against the DES. Thus, if EC or SDL key sizes may be
expected to satisfy a certain security margin, they also offer resistance against
incomplete attacks that is at least equivalent to the resistance offered by the
DES. Because furthermore incomplete attacks against RSA and TDL systems
cannot be expected to be successful at all (cf. 2.4.9 and Subsection 5.9), we con-
clude that the effect of incomplete attacks has effectively been taken care of in
our model. See also Subsection 5.8.

3.1.5 Computing environment. To estimate how the computing power avail-
able to attackers may change over time we use Moore’s law. Moore’s law states
that the density of components per integrated circuit doubles every 18 months.
A widely accepted interpretation of this law is that the computing power per
chip doubles every 18 months. There is some skepticism whether this law will, or
even can, hold much longer because new technologies will eventually have to be
developed to keep up with it. Therefore we allow the user to define the following
slight variation of Moore’s law that is less technology dependent.

19

Definition II. The variable m > 0 is defined as the number of months it takes
on average for an expected two-fold processor speed-up and memory size
increase.

Default Setting II. Our default setting for m is m = 18.

Definition III. The 0,1-valued variable t defines how m must be interpreted:
– If t = 1 the amount of computing power and random access memory

(RAM) one gets for a dollar is expected to double every m months.
– If t = 0 the amount of computing power and RAM is expected to double

every m months, irrespective of the price.

Default Setting III. Our default setting for t is t = 1.

Default Setting II corresponds to a popular interpretation of Moore’s law. Com-
bined with Default Setting III it leads to a less technology dependent version
of Moore’s law that may hold even if Moore’s traditional law no longer holds
because of technological limitations.

So far Default Settings II and III seem to be sufficiently accurate: every 18
months the amount of computing power and RAM one gets for a dollar doubles.
With these default settings it follows that for the same cost one expects to get
a factor of 210∗12/18 ≈ 100 more computing power and fast memory every 10
years, either in software on multipurpose chips (PCs) or using special-purpose
hardware.

To illustrate this, it is not unreasonable to assume that a cheaper and slower
version of the DES key searching [$50 million, 2 days, 1980]-hardware (cf. 2.2.5)
would be [$1 million, 100 days, 1980]-hardware, i.e., 50 times less hardware and
therefore 50 times slower. With Default Settings II and III the latter hardware
may be expected to be 28.7 times faster in 1993, since there are 12∗13 = 18∗8.66
months between 1980 and 1993. Since 28.7 ≈ 406 and 100/406 days is about 6
hours, this would result in [$1 million, 6 hours, 1993]-hardware which is indeed
close to Wiener’s [$1 million, 3.5 hours, 1993]-hardware design (cf. 2.2.5).

On the other hand, further extrapolation suggests [$1 million, 0.6 hours,
1998]-hardware for DES key searching. That is approximately equivalent to
[$130,000, 4.6 hours, 1998]-hardware, and thereby about 24 times faster than
the [$130,000, 112 hours, 1998]-hardware that was actually built in 1998 [19].
According to [20] this anomaly is due to the fact that building the 130,000 dollar
machine was, relatively speaking, a small scale enterprise where every doubling
of the budget would have quadrupled the performance. Obviously this non-linear
improvement applies only as long as the device is relatively small.

If t = 0 it is assumed that the computational resources available to attackers
double every m months, so their budgets are not immediately relevant. If t = 1
the effect of budget increases and inflation have to be taken into account. This
leads to the following definition.

Definition IV. The variable b > 0 is defined as the number of years it takes
on average for an expected two-fold increase of budget.

20

Default Setting IV. Our default setting for b is b = 10.

The US Gross National Product shows a trend of doubling every ten years: $1630
billion in 1975, $4180 billion in 1985, and $7269 billion in 1995, where each figure
is given in contemporary dollars. Default Setting IV leads to the assumption that
the budgets of organizations – including the ones breaking cryptographic keys –
double every ten years, measured in contemporary dollars.

Note that with Default Setting IV the effect of budget increases is very small;
cf. Remark 1.1.1.

3.1.6 Combination of Defaults Settings I, II, III and IV. If in 1982 an
amount of computing power of 0.5 MMY is assumed to be infeasible to invest in
an attack on a commercial cryptographic application, then ∼ 100 ∗ 2 ∗ 0.5 = 100
MMY is infeasible in 1992. Furthermore, ∼ 200∗100 = 2∗104 MMY is infeasible
in 2002, and 4∗106 MMY is infeasible in 2012. These figures agree with Odlyzko’s
estimates based on computing power that may be available on the Internet [29].
Our estimates are, however, obtained in an entirely different fashion.

3.1.7 Cryptanalysis. It is impossible to say what cryptanalytic developments
will take place, or have already taken place surreptitiously. We find it reasonable
to assume that the pace of (published) future cryptanalytic findings and their
impact are not going to vary dramatically compared to what we have seen from
1970 until 1999, as described in 2.2.8, 2.4.10, 2.5.7, 2.6.8, and 2.7.5. Nevertheless,
we allow some flexibility in the choice of expected cryptanalytic progress.

As indicated in 2.2.8 and 2.7.5 we assume that there will be no cryptanalytic
developments affecting symmetric key cryptosystems or hash functions: if there
is progress we assume that the affected system or function is replaced by a system
or function that is not affected.

It follows from 2.4.10 and 2.6.8 that we have to take a more flexible approach
to asymmetric cryptosystems.

Definition V. The number r > 0 is defined as the number of months it is
expected to take on average for cryptanalytic developments affecting classical
asymmetric systems to become twice as effective, i.e., r months from now we
may expect that attacking the same classical asymmetric system costs half
the computational effort it costs today.

Default Setting V. Our default setting for r is r = 18.

Default Setting V corresponds closely to cryptanalytic progress affecting clas-
sical asymmetric systems during the past 25 years, as mentioned in 2.4.10; cf.
Remark 4.3.1.2.

Definition VI. The number c ≥ 0 is defined as the number of months it is
expected to take on average for cryptanalytic developments affecting EC
systems (chosen as indicated in 2.6.8) to become twice as effective, unless
c = 0 in which case no EC cryptanalytic progress is expected.

21

Default Setting VI. Our default setting for c is c = 0.

Default Setting VI corresponds with the fact that there has not been substan-
tial cryptanalytic progress affecting EC systems, assuming the system has been
properly chosen as indicated in 2.6.8.

Since there has been no cryptanalytic progress affecting SDL systems since
the invention of Pollard’s rho method (and its parallelization) other than progress
affecting the full multiplicative group (cf. 2.5.7), we assume no cryptanalytic
progress affecting SDL systems. Although for EC systems the situation is similar
(i.e., for properly chosen parameters no progress to speak of over the last 10 or so
years) we chose to allow progress for EC cryptanalysis (with Default Setting VI
‘no progress’) because, unlike SDL systems, it is not hard to find researchers who
find it not unlikely that there will be EC cryptanalytic progress. We do not find
it realistic to exclude the possibility of cryptanalytic progress affecting classical
asymmetric systems, so r is assumed to be strictly positive.

3.1.8 Remark on default settings. We do not expect that everyone agrees
with our default settings. In particular Default Setting I is debatable. Note,
however, that it does not assume that the DES was unbreakable in 1977 or 1982.
It assumes that the DES offered enough security for commercial applications, not
that well-funded government agencies were unable to break it back in 1977. In
this context it may be entertaining to mention that Mike Wiener, after presenting
his [$1 million, 3.5 hours, 1993]-hardware design at a cryptography conference,
was told that he had done a nice piece of work and he was offered a similar
machine at only 85% of the cost – with the catch that it was 5 years old [45]. In
any case, anyone who feels that our default 1982 infeasibility assumption is too
weak or too strong can still use the key size recommendations that result from
Default Setting I, i.e., s = 1982. In Subsection 4.4 it is explained how this may
be done.

Neither do we expect that everyone agrees with Default Settings II, III,
and IV. Some argue that Moore’s law cannot hold much longer, others argue
that it is well understood that Moore’s law is very likely to die around 2012 or
so, and still others [20] find that for big machines Moore’s law is too pessimistic.
Default Settings II, III, and IV thus represent a reasonable compromise, in par-
ticular because they allow a technology independent interpretation of Moore’s
law – even if technology gets worse, if that were possible, acquiring computing
power may become cheaper.

3.2 Software Versus Special-Purpose Hardware Attacks

The proposed key sizes in the next section are obtained by combining Default
Settings I-VI with the software based Mips-Years data points from Section 2.
This implies that all extrapolations are based on ‘software only’ attacks and
result in computationally equivalent key sizes (Subsection 1.4). One may object
that this does not take special-purpose hardware attacks into account. In this
subsection we discuss to what extent this is a reasonable decision, and how

22

our results should be interpreted to take special-purpose hardware attacks into
account as well.

3.2.1 Symmetric key systems. In 1980 the DES could either be broken at
the cost of 0.5 MMY (cf. 2.2.4), or using [$50 million, 2 days, 1980]-hardware
(cf. 2.2.5). In 3.1.5 we have shown that this is consistent with Default Setting II
and Wiener’s 1993 design. It follows from this consistency that the 1982 rela-
tion between software and special-purpose hardware attacks on the DES has
not changed. In particular, if one assumes that the DES was sufficiently resis-
tant against a special-purpose hardware attack in 1982, the same holds for the
symmetric key sizes suggested for the future, even though they are based on
extrapolations of ‘software only’ attacks. We note that our estimates and the re-
sulting cost of special hardware designs for exhaustive key search are consistent
with the estimates given in [3, 5].

Furthermore, it seems reasonable to assume that a DES attack of one MMY
is comparable to an attack by [$10 million, 20 days, 1980]-hardware or, using
Default Setting II, [$200 ∗ 106/210.66 =$125,000, 1 day, 1996]-hardware.

3.2.2 EC systems. The cost of a software attack on a 109-bit EC system with
p = 2109 was estimated as 8 MMY (cf. 2.6.4), so that attacking a 120-bit EC
system with p = 2155 should take about (2(120−109)/2) ∗ (155/109)2 ≈ 91 times
as many Mips-Years, i.e., about 730 MMY. The [$10 million, 32 days, 1996]-
hardware design attacking a 120-bit EC system with p = 2155 (cf. 2.6.5) should
thus be more or less comparable to 730 MMY. However, the designers of the
hardware device remark that their design was based on 1992 (or even older)
technology which can be improved by using 1996 technology. So, by Default
Setting II, the ‘upgraded’ [$10 million, 32 days, 1996]-hardware design could be
more or less comparable with 730 ∗ 2(1996−1992)/1.5 ≈ 4600 MMY. It follows that
an EC attack of one MMY is comparable to [$70,000, 1 day, 1996]-hardware.

With 3.2.1 we find that one MMY is equivalent to [$70,000 to $125,000, 1 day,
1996]-hardware depending on an EC or a DES attack. Because of the consistency
of these conversions it is tempting to suggest that one MMY is approximately
equivalent to [$100,000, 1 day, 1996]-hardware; more generally, that one MMY
would be equivalent to [$105/2(y−1996)/1.5, 1 day, y]-hardware in year y. That
is, one MMY is equivalent to [$25,000, 1 day, 1999]-hardware. This conversion
formula would allow us to go back and forth between software and special-
purpose hardware attacks, and make our entire model applicable to hardware
attacks as well.

In our opinion the consistency between the two conversions is a mere co-
incidence without much practical merit. In the first place, the estimate holds
only for relatively simple minded DES or EC cracking devices for elliptic curves
over non-prime fields (i.e., those with p = 2k), not for elliptic curves over prime
fields and certainly not for full-blown PCs. For prime fields the hardware would
be considerably slower, whereas in software EC systems over prime fields can
be attacked faster than those over non-prime fields (cf. 2.6.4). Thus, for special-
purpose hardware attacks on EC systems over prime fields the above consistency
no longer holds.

23

In the second place, according to [44], the pipelined version of the EC-
attacking special-purpose hardware referred to above would be about 7 times
faster, which means that also for special-purpose hardware attacks on EC sys-
tems over non-prime fields the consistency between DES and EC attacks is lost.
Also according to [44], the prime field version of the pipelined device would be
about 24 to 25 times slower than the non-prime field version. It should be noted
that the details of the pipelined device have never been published (and most
likely will never be published [45]).

As mentioned in 2.6.8, we consider only EC systems that use randomly se-
lected curves over prime fields. Therefore we may base our recommendations on
‘software only’ attacks, if we use the software based data point that a 109-bit EC
system can be attacked in 2.2 MMY (cf. 2.6.4). This can be seen as follows. The
2.2 MMY underestimates the true cost, and is lower than the 8 MMY cost to
attack the non-prime field of equivalent size. The latter can be done using non-
pipelined special-purpose hardware in a way that is more or less consistent with
our DES infeasibility assumption, as argued above. For special-purpose hardware
a non-prime field can be attacked faster than a prime field of equivalent size, so
if we use the näıve DES-consistent hardware conversion, then the hypothetical
special-purpose hardware that follows from extrapolation of the 2.2 MMY figure
to larger prime fields substantially underestimates the true hardware cost. That
means that the resulting key sizes are going to be too large, which is acceptable
since we are deriving lower bounds for key sizes (Subsection 1.3).

The more realistic prime field equivalent of the non-DES-consistent pipelined
device for non-prime fields is, based on the figures given above, at least 24 ∗
8/(2.2 ∗ 7) > 8 times slower than our hypothetical hardware. This implies that
the more realistic hardware would lead to lower key sizes than the hypothetical
hardware. Thus, it is acceptable to stick to the latter (Subsection 1.3). It follows
that, if one assumes that the DES was sufficiently resistant against a special-
purpose hardware attack in the year indicated by the security margin s as in
Definition I, the same holds for the EC key sizes suggested for the future, even
though they are based on extrapolations of ‘software only’ attacks.

3.2.3 SDL systems. The same holds for SDL systems because our analysis of
SDL key sizes is based on the EC analysis as described in 4.2.5 below.

3.2.4 Classical asymmetric systems. For classical asymmetric systems we
do not consider special-purpose hardware attacks, as argued in 2.4.7. The is-
sue of software attacks on classical asymmetric systems versus special-purpose
hardware attacks on other cryptosystems is discussed in 3.2.5 below.

3.2.5 Cost comparison of software and special-purpose hardware at-
tacks. Our key size recommendations below are computationally equivalent
(Subsection 1.4) and, as argued in 3.2.2, they all offer security at least equiv-
alent to the 1982 security of the DES (based on Default Setting I), both against
software and special-purpose hardware attacks. That does not necessarily imply
that the key sizes for the various cryptosystems are also cost equivalent (Subsec-

24

tion 1.4), because the equipment costs of the 1982 software and special-purpose
hardware attacks on the DES are not necessarily equal either.

One point of view is that accessing the hardware required for software at-
tacks is, or ultimately will be, essentially for free. This is supported by all In-
ternet based cryptosystem attacks so far and other large computational Inter-
net projects such as SETI. Adoption of this simple-minded rule would make
computational and cost equivalence identical, which is certainly not generally
acceptable [44]. Unfortunately, a precise equipment cost comparison defies exact
analysis, primarily because no precise ‘cost of a PC’ can be pinpointed, but also
because a truly complete analysis has never been carried out for the pipelined
EC attacking design from [44, 45]. As pointed out in Subsection 1.4 this is one
of the reasons that we decided to use computational equivalence as the basis for
our results. Nevertheless, we sketch how an analysis based on cost equivalence
could be carried out.

Definition VII. The number P > 0 is defined as the price in US dollars of
a stripped down PC with at least 64 Megabytes of RAM. By a stripped
down PC we mean a 450 MHz Pentium II processor, a mother-board, and
communications hardware.

Default Setting VII. Our default setting for P is P = 100.

According to newspaper advertisements fully equipped PCs can be bought for
prices varying from 0 to 450 dollars. The ‘free’ machines support the point of
view that software attacks are for free. Default Setting VII assumes that one does
not want to deal with the strings attached to the free machines and is based on
wholesale extrapolation of current prices. Our choice disregards the possibility
of a much larger quantity discount one should be able to negotiate for a very
large order.

Assuming Default Setting VII, one million software Mips-Years is equiva-
lent to [$365 ∗ 106 ∗ 100/450 =$81 million, 1 day, 1999]-hardware. Compared to
the exhaustive DES key search [$125,000, 1 day, 1996] ≈ [$31,250, 1 day, 1999]-
hardware from 3.2.1, a software Mips-Year is thus about

365 ∗ 106 ∗ $100
450 ∗ $31, 250

≈ 100 ∗ 26 = 26 ∗ P

times more expensive. Compared to the pipelined [$70,000/7, 1 day, 1996] ≈
[$2600, 1 day, 1999]-hardware to attack EC systems over non-prime fields re-
ferred to in 3.2.2, a software Mips-Year is more than 3 ∗ 104 = 300 ∗ P times
more expensive, but at most about 2 ∗ 103 = 20 ∗ P times more expensive than
the prime field version of the pipelined design.

It follows that for our purposes software Mips-Years are at most 26 ∗ P
times more expensive than Mips-Years produced by special-purpose hardware.
In Subsection 4.5 it is shown how this factor 26 ∗ P can be used to derive cost-
equivalent key sizes from the computationally equivalent ones.

25

Note that the factor 26 ∗ P should be taken with a large grain of salt. Its
scientific merit is in our opinion questionable because it is based on the pre-
sumed infeasibility of special-purpose hardware attacks on RSA (cf. 2.4.7 and
the pipelined design in [12]).

3.3 Memory considerations

The processors contributing to a parallelized exhaustive key search do not require
a substantial amount of memory. This is also the case for the processors involved
in a parallelized attack using Pollard’s rho method against SDL or EC systems.
Although for the parallelized version of Pollard’s rho method substantial storage
space has to be available at a central location, we assume that storage require-
ments do not have to be taken into account to estimate SDL and EC system key
sizes.

For parallelized NFS attacks against classical asymmetric systems, however,
each of the contributing processors needs a relatively large amount of RAM of
speed compatible with the processor speed. Until recently memory access times
and not processor speeds determined the effective run times of the standard type
of sieving used: a clock rate twice as fast would often result in only marginally
faster sieving. This is because standard sieving requires very little computation
and consists almost exclusively of constant updates of more or less random lo-
cations in a large chunk of memory, and thus does not allow efficient caching.
Straightforward extrapolation of run times to faster processors was therefore
impossible.

Newer generations of processors with larger memories allow efficient imple-
mentation of NFS lattice sieving, which is, compared to standard sieving, a rela-
tively compute-intensive method. Its efficiency depends mostly on the processor
speed, and memory access time hardly matters. To illustrate this, we observed
that the speed of NFS lattice sieving on Pentium processors grows strictly lin-
early with the processor speed, with an interesting larger-than-expected speed-
up when moving from Pentium I to Pentium II processors: an average sieving
step operation for the result presented in [6] takes 15.8 seconds on a 133MHz
Pentium I, 12.7 seconds on a 166MHz Pentium I, 5.34 seconds on a 300MHz Pen-
tium II, and 3.61 seconds on a 450 MHz Pentium II. Here all processors execute
the same binary that uses about 48MB of their about 200MB RAMs.

As a consequence, there does not seem to be any reason not to extrapolate
NFS run times in the standard fashion. At worst the extrapolated sieving times
are lower than the actual ones, making factoring look easier than it actually
is, and thereby making the RSA key size recommendations somewhat larger
(Subsection 1.3).

The amount of memory required by the NFS grows with the squareroot of
the run time. Since m (Definition II) is assumed to be strictly positive, available
RAM grows linearly with the processor speed. Thus, since current processors
have in general enough memory for problems that are currently solved using the
NFS, we may assume that future processors have more than enough memory
to tackle future problems. Combining these observations we conclude that the

26

NFS memory requirements do not explicitly have to be taken into account when
extrapolating NFS run times to future processors and larger RSA moduli or field
sizes.

4 Lower Bound Estimates for Cryptographic Key Sizes

4.1 Introduction

In this section we present formulas that can be used to derive lower bounds
for cryptographic key sizes. In Subsections 4.2 to 4.5 we concentrate on key size
recommendations that can be expected to offer an acceptable security margin
until a year specified by the user. In Subsection 4.6 we describe how key size
recommendations can be derived that can be expected to offer a level of security
that is currently (i.e., at the time of writing of this article) at least equivalent
to a symmetric key size specified by the user.

The recommendations in this paper are based on the default settings. To use
other settings, refer to Subsection 4.4, or use the Java applet provided by Kai
Puolamäki [30].

4.1.1 Remark on precision. Our ‘progress’ parameters m, r, and c (from
Definitions II, V, and VI, respectively) are measured in months, because that
corresponds to the way Moore’s law is often formulated. Below, however, time
is measured in whole years, as is the security margin s (from Definition I). In
principle we could adopt a much finer granularity and, for instance, use the
more precise data point that a 511.7-bit RSA modulus was broken in 1999.64.
In our opinion that would give a misleading sense of precision that would be
inappropriate for an article of this sort.

One may object – and we would not disagree – that key size recommendations
should not be given on a year-by-year basis, as we do below. In our experience,
however, the uncertainties inherent in this type of ‘back-of-the-envelope’ engi-
neering are not appreciated by all intended users: if a year is not specified in our
tables, they may end up using an interpolated value, instead of simply using the
next year up. If calculated properly, there is nothing wrong with interpolated
values (the curves are convex, and we are only interested in lower bounds), but
it is more convenient, and safer, to simply provide values for all years.

Another point of criticism is that we do not round the values resulting from
our formulas, thereby failing to reflect that they are crude estimates at best.
Thus, if according to some formula, a key size of 1537 bits is believed to be
adequate for a certain year (and certain parameter settings), then we print the
value 1537 in our tables, and not 1500, 1536, 1568, or 1600. We wholeheartedly
agree that something like 1537 gives a misleading sense of precision, and of
course we considered rounding values, but we decided not to do so for a couple
of reasons. First of all, we would always have to round up, but we would have
to use different granularities for RSA and TDL recommendations compared to
those for symmetric key, SDL, or ECC systems. Without any doubt the resulting
relatively long RSA keys would be interpreted as the authors’ bias against RSA

27

and in favor of ECC, something we want to avoid at all cost. Secondly, and
this may seem strange to many readers, there is an amazingly common belief,
or misunderstanding, that RSA keys must have a length that is divisible by
a non-trivial power of 2 such as 32, 64, or 128. We do not want to fuel this
misconception by recommending RSA key sizes that are all 0 modulo 32 or even
10, or that show any other pattern that can (and will) be misunderstood. Thus,
rounding is fine, but the user will have to do it – we just provide the bare,
unbiased numbers.

We are grateful to an anonymous referee for bringing up this subject once
again. We hope these paragraphs clarify our opinions and decisions.

4.2 Key size formulas for a given year

4.2.1 Infeasible number of Mips-Years IMY . Suppose that key sizes have
to be determined that achieve at least a specified security margin until year y.
Breaking the DES takes 5 ∗ 105 Mips-Years (cf. 2.2.4). This amount of compu-
tation offered an acceptable level of security in the year s (Definition I in 3.1.2).
Based on Definitions I-IV in 3.1.2 and 3.1.5 it follows that in year y, i.e., y − s
years later, an amount of computation of

IMY (y) = 5 ∗ 105 ∗ 212(y−s)/m ∗ 2t(y−s)/b Mips-Years

offers an acceptable level of security. Here IMY (y) stands for ‘Infeasible number
of Mips-Years for year y’. The factor 212(y−s)/m is due to the expected proces-
sor speed-up in the period from year s to year y (Definitions I and II in 3.1.2
and 3.1.5), and the factor 2t(y−s)/b reflects the expected increase in the budget
available to an attacker (Definitions I, III, and IV in 3.1.2 and 3.1.5). The re-
sulting value IMY (y) is used to derive key sizes that offer an acceptable level
of security until year y, for all cryptographic primitives considered in Section 2.

4.2.2 Symmetric key systems. For symmetric key cryptosystems we intro-
duce the possibility that the block-encryption speed of the symmetric key system
to be used is different from the block-encryption speed of the DES.

Definition VIII. The variable v > 0 is defined as the ratio of the number of cy-
cles required for a single block encryption using the DES and the symmetric
key system the user wishes to use.

Default Setting VIII. Our default setting for v is v = 1.

Because the symmetric key system to be used is v times slower than the DES,
attacking it goes v times slower as well. It follows that if the symmetric key
system is used with a key d of at least

56 + log2(IMY (y)/(5 ∗ 105 ∗ v)) = 56 + (y − s)(12/m + t/b)− log2(v) bits,

with IMY (y) as in 4.2.1, then the security offered by the symmetric key system
until year y is at least computationally and cost equivalent (cf. 3.2.1) to the

28

security offered by the DES in year s. Here we use that the DES has a 56-bit
key (cf. 2.2.1), that it can be attacked in 5 ∗ 105 Mips-Years (cf. 2.2.4), and that
there is no faster attack method than exhaustive search (cf. 2.2.8).

4.2.3 Classical asymmetric systems. For classical asymmetric systems we
use the asymptotic run time L[n] of the NFS (omitting the o(1)) as defined
in 2.4.4 combined with the data point that a 512-bit key was broken in 1999 at
the cost of less than 104 Mips-Years (cf. 2.4.6). Furthermore, we expect crypt-
analytic progress by a factor 212(y−1999)/r compared to the state of the art in
1999, the year of the data point (cf. 2.4.10 and Definition V in 3.1.7). It follows
that if the classical asymmetric key size k is chosen such that

L[2k]
IMY (y) ∗ 212(y−1999)/r

≥ L[2512]
104

,

then the security offered by classical asymmetric systems until year y is at least
computationally equivalent to the security offered by the DES in year s. If, on
the other hand, the classical asymmetric key size k′ is chosen such that

L[2k′]
IMY (y) ∗ 212(y−1999)/r

≥ L[2512]
104 ∗ 26 ∗ P

,

then the security offered by classical asymmetric systems until year y is at least
cost equivalent to the security offered by the DES in year s (Definition VII
in 3.2.5). The factor 26 ∗ P is explained in 3.2.5.

Because the data point used slightly overestimates the cost of factoring a
512-bit key and because we omit the o(1), the difficulty of breaking classical
asymmetric systems is overestimated (cf. 2.4.4), i.e., the classical asymmetric
key sizes should be slightly larger than given in Table 1. We did not attempt to
correct this, because the effect is minor and may disappear if the RSA key sizes
given in Table 1 are rounded in a reasonable way (Remark 4.1.1).

4.2.4 EC systems. For EC systems we use the expected growth rate of the
number of group operations required by Pollard’s rho method (cf. 2.6.3), the ex-
pected growth of the cost of the group operations (cf. 2.6.4), and the optimistic
estimate that a 109-bit EC system can be broken in 2.2 MMY (cf. 2.6.4). Fur-
thermore, if c > 0 (Definition VI in 3.1.7), we expect cryptanalytic progress by
a factor 212(y−1999)/c compared to the state of the art in 1999 (the year of the
data point). We set C = 1 if c = 0 and C = 212(y−1999)/c otherwise. It follows
that if the EC key size u is chosen such that

2u/2 ∗ u2

IMY (y) ∗ C
≥ 2109/2 ∗ 1092

2.2 ∗ 106
,

then the security offered by EC systems until year y is at least computationally
and cost equivalent (cf. 3.2.2) to the security offered by the DES in year s. The
factors u2 and 1092 account for the relative speed of the arithmetic operations
to be performed by Pollard’s rho method.

29

4.2.5 SDL systems. For SDL systems we use finite field size k̄ with k̄ either
equal to k or k′ as in 4.2.3 (cf. 2.4.6, 2.5.1, and 2.5.3). Because no suitable SDL
data points are available (cf. 2.5.4) we estimate that arithmetic operations in a k̄-
bit finite field are k̄2/(1092 ∗9) times more expensive than arithmetic operations
in an elliptic curve group over a 109-bit finite field (where the ‘9’ underestimates
the number of field multiplications required for an EC operation, estimated as 12
in 2.6.3). Since for SDL

√
2 more iterations in Pollard’s rho method may be

expected than for EC systems, it follows that if the subgroup size z satisfies

2z/2 ∗ k̄2

IMY (y)
≥ 2109/2 ∗ 1092 ∗ 9√

2 ∗ 2.2 ∗ 106

and the finite field size is at least k̄, then the security offered by SDL systems
until year y is at least equivalent to the security offered by the DES in year s:
computationally equivalent if k̄ = k and cost equivalent if k̄ = k′ with k and k′

as in 4.2.3. Note that the above expression for z is equivalent to

z ≥ 109 + 2 log2

(
IMY (y) ∗ 1092 ∗ 9
k̄2 ∗

√
2 ∗ 2.2 ∗ 106

)
.

The resulting sizes are too large because the 2.2 MMY estimate is on the low
side. This optimism is to a small extent corrected by the optimistic choice of 9
field multiplications (where 12 or 13 would be more accurate [14]). It follows
from a straightforward analysis that the subgroup size resulting from the above
formula is of the required difficulty, independent of the EC data point, if a mul-
tiplication in a field of size k̄ takes about k̄2/69 Pentium clock cycles. According
to our own experiments with reasonably fast but non-optimized software a field
multiplication can be done in k̄2/24 Pentium clock cycles, so that the subgroup
sizes resulting from the EC-based data point are at most two bits too large
(Subsection 1.3).

4.3 Lower bounds for computationally equivalent key sizes

For years ranging from 1982 to 2050 and for Default Settings I-VIII the com-
putationally equivalent key size recommendations resulting (Remark 4.1.1) from
the formulas given in Subsection 4.2 are given in Table 1. Furthermore, Table 1
contains key size recommendations for c = 18, i.e., cryptanalytic progress affect-
ing EC systems comparable to Default Setting V for the cryptanalytic progress
affecting classical asymmetric systems. For cost-equivalent key size recommen-
dations see Subsection 4.5.

4.3.1 Remarks on the computation of Table 1.

1. Strictly speaking the data for years before 1999 do not make sense for the ‘EC
with c = 18’ column, because we already know that for random curves over
prime fields such progress did not occur before 1999. Nevertheless, these data
can be found in Table 1 as well, in italics. It is described in Subsection 4.4 in
what circumstances these data, and the other data in italics, may be used.

30

2. The data in Table 1 do not change significantly if the ‘512-bit, 104 Mips-
Years, 1999’ data point is replaced by, for instance, ‘333-bit, 30 Mips-Years,
1988’ (the first 100-digit factorization) or ‘429-bit, 5000 Mips-Years, 1994’
(the factorization of the RSA-Challenge; 5000 Mips-Years overestimates the
time it took to break the RSA-Challenge despite the remarks made in [37]).
This validates our default setting for r for cryptanalytic progress affecting
classical asymmetric systems, cf. 2.4.10 and 3.1.7.

4.3.2 Using Table 1. Assuming one agrees with Default Settings I-VII, Table 1
can be used as follows. Suppose one is developing a commercial application in the
year 2000 in which the confidentiality or integrity of the electronic information
has to be guaranteed for 20 years, i.e., until the year 2020. Looking at the
row for the year 2020 in Table 1, one finds that an amount of computing of
2.94 ∗ 1014 Mips-Years in the year 2020 may be considered to be as infeasible as
5 ∗ 105 Mips-Years was in 1982 (cf. 2.2.4). Security computationally equivalent
(Subsection 1.4) to that offered by the DES in 1982 is obtained by using in the
year 2020 (while keeping Remark 4.1.1 in mind):

– Symmetric keys of at least 86 bits, and hash functions of at least 172 bits;
– RSA moduli of at least 1881 bits; the meaning of the ‘1472’ given in the

second entry of the same column is explained in Subsection 4.5.
– Subgroup discrete logarithm systems with subgroups of at least 151 bits with

finite fields of at least 1881 bits. Thus, for an SDL system such as XTR it
follows that log2(q) ≈ 151 and 6 ∗ log2(p) ≈ 1881 [23].

– Elliptic curve systems over prime fields of at least 161 bits if one is confident
that no cryptanalytic progress will take place, and at least 188 bits if one
prefers to be more careful.

If finite fields are used in SDL or EC systems that allow significantly faster
arithmetic operations than suggested by our estimates, the data in Table 1 can
still be used: if the field arithmetic goes x times faster, keys should be roughly
2 ∗ log2(x) bits larger than indicated in Table 1. As noted above, however, the
field arithmetic is already assumed to be quite fast. Similarly, if one does not
agree that the data point used for EC systems underestimates the actual cost
and that we overestimated the cost by a factor x, i.e., that the 2.2 MMY to
attack 109-bit EC systems (cf. 2.6.4) should be only 2.2/x MMY, add roughly
2 ∗ log2(x) bits to the suggested EC key sizes.

Note that it does not follow from Table 1 or the default settings that 1024-bit
RSA keys will be safe only until 2002 [38]. It follows from Table 1 that until the
year 2002, RSA keys of 1024 bits can be expected to offer security computa-
tionally equivalent to the DES in 1982. In this context, see also Remarks 1.4.1
and 3.1.3.

31

Table 1. Lower bounds for computationally equivalent key sizes, assuming s = 1982,
m = 18, t = 1, b = 10, r = 18, c = 0 and c = 18, v = 1.

Symmetric Classical SDL Elliptic Elliptic Infeasible Lower bound Corresponding
Key Size Asymmetric Key Curve Curve number of for hardware number of

Key Size Size Key Key Mips-Years cost in US$ for years on
and SDL Size Size a 1 day attack a 450MHz

Year Field Size c = 0 c = 18 (cf. 4.5) Pentium II PC

1982 56 417 288 102 105 85 5.00 ∗ 105 3.98 ∗ 107 1.11 ∗ 103

1984 58 463 320 105 108 89 1.45 ∗ 106 4.57 ∗ 107 3.22 ∗ 103

1986 60 513 352 107 111 96 4.19 ∗ 106 5.25 ∗ 107 9.31 ∗ 103

1988 61 566 384 109 114 101 1.21 ∗ 107 6.04 ∗ 107 2.69 ∗ 104

1990 63 622 448 112 117 106 3.51 ∗ 107 6.93 ∗ 107 7.80 ∗ 104

1991 63 652 448 113 119 109 5.97 ∗ 107 7.43 ∗ 107 1.33 ∗ 105

1992 64 682 480 114 120 112 1.02 ∗ 108 7.96 ∗ 107 2.26 ∗ 105

1993 65 713 512 116 121 114 1.73 ∗ 108 8.54 ∗ 107 3.84 ∗ 105

1994 66 744 544 117 123 117 2.94 ∗ 108 9.15 ∗ 107 6.53 ∗ 105

1995 66 777 544 118 124 121 5.00 ∗ 108 9.81 ∗ 107 1.11 ∗ 106

1996 67 810 576 120 126 122 8.51 ∗ 108 1.05 ∗ 108 1.89 ∗ 106

1997 68 844 608 121 127 125 1.45 ∗ 109 1.13 ∗ 108 3.22 ∗ 106

1998 69 879 640 122 129 129 2.46 ∗ 109 1.21 ∗ 108 5.48 ∗ 106

1999 70 915 672 123 130 130 4.19 ∗ 109 1.29 ∗ 108 9.31 ∗ 106

2000 70 952 704 125 132 132 7.13 ∗ 109 1.39 ∗ 108 1.58 ∗ 107

2001 71 990 736 126 133 135 1.21 ∗ 1010 1.49 ∗ 108 2.70 ∗ 107

2002 72 1028 768 127 135 139 2.06 ∗ 1010 1.59 ∗ 108 4.59 ∗ 107

2003 73 1068 800 129 136 140 3.51 ∗ 1010 1.71 ∗ 108 7.80 ∗ 107

2004 73 1108 832 130 138 143 5.98 ∗ 1010 1.83 ∗ 108 1.33 ∗ 108

2005 74 1149 864 131 139 147 1.02 ∗ 1011 1.96 ∗ 108 2.26 ∗ 108

2006 75 1191 896 133 141 148 1.73 ∗ 1011 2.10 ∗ 108 3.84 ∗ 108

2007 76 1235 928 134 142 152 2.94 ∗ 1011 2.25 ∗ 108 6.54 ∗ 108

2008 76 1279 960 135 144 155 5.01 ∗ 1011 2.41 ∗ 108 1.11 ∗ 109

2009 77 1323 1024 137 145 157 8.52 ∗ 1011 2.59 ∗ 108 1.89 ∗ 109

2010 78 1369 1056 138 146 160 1.45 ∗ 1012 2.77 ∗ 108 3.22 ∗ 109

2011 79 1416 1088 139 148 163 2.47 ∗ 1012 2.97 ∗ 108 5.48 ∗ 109

2012 80 1464 1120 141 149 165 4.19 ∗ 1012 3.19 ∗ 108 9.32 ∗ 109

2013 80 1513 1184 142 151 168 7.14 ∗ 1012 3.41 ∗ 108 1.59 ∗ 1010

2014 81 1562 1216 143 152 172 1.21 ∗ 1013 3.66 ∗ 108 2.70 ∗ 1010

2015 82 1613 1248 145 154 173 2.07 ∗ 1013 3.92 ∗ 108 4.59 ∗ 1010

2016 83 1664 1312 146 155 177 3.51 ∗ 1013 4.20 ∗ 108 7.81 ∗ 1010

2017 83 1717 1344 147 157 180 5.98 ∗ 1013 4.51 ∗ 108 1.33 ∗ 1011

2018 84 1771 1376 149 158 181 1.02 ∗ 1014 4.83 ∗ 108 2.26 ∗ 1011

2019 85 1825 1440 150 160 185 1.73 ∗ 1014 5.18 ∗ 108 3.85 ∗ 1011

2020 86 1881 1472 151 161 188 2.94 ∗ 1014 5.55 ∗ 108 6.54 ∗ 1011

2021 86 1937 1536 153 163 190 5.01 ∗ 1014 5.94 ∗ 108 1.11 ∗ 1012

2022 87 1995 1568 154 164 193 8.52 ∗ 1014 6.37 ∗ 108 1.89 ∗ 1012

2023 88 2054 1632 156 166 197 1.45 ∗ 1015 6.83 ∗ 108 3.22 ∗ 1012

2024 89 2113 1696 157 167 198 2.47 ∗ 1015 7.32 ∗ 108 5.48 ∗ 1012

2025 89 2174 1728 158 169 202 4.20 ∗ 1015 7.84 ∗ 108 9.33 ∗ 1012

2026 90 2236 1792 160 170 205 7.14 ∗ 1015 8.41 ∗ 108 1.59 ∗ 1013

2027 91 2299 1856 161 172 207 1.21 ∗ 1016 9.01 ∗ 108 2.70 ∗ 1013

2028 92 2362 1888 162 173 210 2.07 ∗ 1016 9.66 ∗ 108 4.59 ∗ 1013

2029 93 2427 1952 164 175 213 3.52 ∗ 1016 1.04 ∗ 109 7.81 ∗ 1013

2030 93 2493 2016 165 176 215 5.98 ∗ 1016 1.11 ∗ 109 1.33 ∗ 1014

2032 95 2629 2144 168 179 222 1.73 ∗ 1017 1.27 ∗ 109 3.85 ∗ 1014

2034 96 2768 2272 171 182 227 5.01 ∗ 1017 1.46 ∗ 109 1.11 ∗ 1015

2036 98 2912 2400 173 185 232 1.45 ∗ 1018 1.68 ∗ 109 3.22 ∗ 1015

2038 99 3061 2528 176 188 239 4.20 ∗ 1018 1.93 ∗ 109 9.33 ∗ 1015

2040 101 3214 2656 179 191 244 1.22 ∗ 1019 2.22 ∗ 109 2.70 ∗ 1016

2042 103 3371 2784 182 194 248 3 .52 ∗ 10 19 2.55 ∗ 109 7 .82 ∗ 10 16

2044 104 3533 2944 185 197 255 1 .02 ∗ 10 20 2.93 ∗ 109 2 .26 ∗ 10 17

2046 106 3700 3072 187 200 260 2 .95 ∗ 10 20 3.36 ∗ 109 6 .55 ∗ 10 17

2048 107 3871 3232 190 203 265 8 .53 ∗ 10 20 3.86 ∗ 109 1 .90 ∗ 10 18

2050 109 4047 3392 193 206 272 2 .47 ∗ 10 21 4.44 ∗ 109 5 .49 ∗ 10 18

32

4.4 Alternative Security Margin

Default Setting I (cf. 3.1.2) assumes that the DES offered enough security for
commercial applications until the year 1982, but not beyond 1982. For corpo-
rations that have used the DES beyond 1982 or even until the late 1990s the
resulting default infeasibility assumption of 0.5 MMY in 1982 (cf. 2.2.4) may be
too strong. For others it may be too weak. Here we explain how to use Table 1
to look up key sizes for year y, for example y = 2005, if s = 1982 + x, i.e., if
one trusts the DES until the year 1982+x. Here x is negative if our infeasibility
assumption is considered to be too weak and positive otherwise. We assume the
default settings for the other parameters. So, for example, x = 13 if one trusts
the DES until 1995. Of course Remark 4.1.1 applies again.

– Symmetric keys: take the entry for year y − x, i.e., 2005− 13 = 1992 in our
example. The resulting symmetric key size suggestion is 64 bits.

– Classical asymmetric keys: take the entry for year y− 23 ∗ x/43, i.e., 2005−
23 ∗ 13/43 ≈ 1998 in our example. So 879-bit RSA and TDL keys should be
used.

– SDL keys: let k′ be the classical asymmetric key size for year y − 23 ∗ x/43,
let z be the SDL size for year y − x, and let k be the classical asymmetric
key size for year y−x, then use a subgroup of size z+4∗ log2(k)−4∗ log2(k′)
over a field of size k′. In our example k′ = 879, z = 114, and k = 682, so
that a subgroup of size 114 + 4 ∗ log2(682)− 4 ∗ log2(879) ≈ 113 bits should
be used with an 879-bit field.

– EC systems with c = 0: take the ‘c = 0’ entry for year y−x, i.e., 2005−13 =
1992 in the example. The resulting EC key size suggestion is 120 bits.

– EC systems with c = 18: take the ‘c = 18’ entry for year y − 23 ∗ x/43,
i.e., 2005 − 23 ∗ 13/43 ≈ 1998 in our example. The resulting EC key size
suggestion is 129 bits.

The Table 1 entries in italics for years before 1999 may be used in the last
application; the other italics entries may be used if x < 0.

The correctness of these methods can be seen as follows. Let k(y, s) denote
the classical asymmetric key size recommendation k for a certain year y and
security margin s. We want to find the year ȳ for which k(ȳ, s) = k(y, s + x),
where s = 1982 by Default Setting I. From the definition of IMY (y) in 4.2.1
and the way k is chosen in 4.2.3 it follows that

(ȳ− s)(12/m+ t/b)+12(ȳ−1999)/r = (y− s−x)(12/m+ t/b)+12(y−1999)/r,

from which we find that ȳ = y − 23 ∗ x/43 if the default settings are used. The
other results follow in the same way.

4.5 Cost-Equivalent Key Sizes

Table 1 can be used to derive cost-equivalent key sizes in the following manner,
if the default settings are used. A lower bound for the equipment cost for a
successful one day attack is given in the second to last column of Table 1, in
year y in dollars of year y.

33

4.5.1 Symmetric key and EC systems. The symmetric key sizes are derived
based on the definition of the security margin s which imply sufficient resistance
against either software or special-purpose hardware attacks. The EC key sizes
are based on estimates that are cost consistent with the symmetric key sizes
(cf. 3.2.2). So for symmetric key and EC systems no corrections are necessary.

4.5.2 Classical aymmetric systems. For classical asymmetric systems, Mips-
Years are supposedly 26 ∗P times as expensive, cf. 3.2.5. For our computational
purposes only this is equivalent to assuming that the DES offers acceptable
security until about 1997, since 12/m + t/b = 23/30, 215∗23/30 is close to 26 ∗ P
for P = 100 (Default Setting VII, 3.2.5), and 1982 + 15 = 1997. Thus, using
Subsection 4.4, classical asymmetric key sizes that are equipment cost equivalent
to symmetric and EC key sizes for year y can be found in Table 1 in the classical
asymmetric key size column for year y − (23 ∗ 15)/43 = y − 8. The resulting
key sizes, rounded up to the nearest multiple of 32, are given as the second
entry in the classical asymmetric key sizes column of Table 1. Breaking such keys
requires a substantially smaller number of Mips-Years than the infeasible number
of Mips-Years for year y, but acquiring the required Mips-Years is supposed to
be prohibitively expensive.

Note that this value is rounded up to the next multiple of 32, despite Re-
mark 4.1.1, reflecting the inherently inaccurate choice P = 100 in Default Set-
ting VII (cf. 3.2.5).

4.5.3 SDL systems. For subgroup discrete logarithm systems in year y, let z
and k be the subgroup and finite field size, respectively, for year y, and let k′ be
the finite field size for year y − 8. For cost equivalence with symmetric and EC
key sizes in year y use subgroups of size z + 4 ∗ log2(k)− 4 ∗ log2(k′) over finite
fields of size k′. As a rule of thumb, subgroups of size z + 2 over finite fields of
size k′ will do.

As an example, in the year 2000 the following key sizes are more or less equipment
cost equivalent: 70-bit symmetric keys, 682-bit classical asymmetric keys, 127-bit
subgroups with 682-bit finite fields, and 132-bit EC keys.

A similar straightforward analysis can be carried out for any other setting
for the parameter P . For instance, for P = 10 or P = 1000 the y − 8 should be
changed into y − 6 or y − 10, respectively.

4.6 Key Sizes Currently Equivalent to Given Symmetric Key Size.

4.6.1 Formulas for key sizes equivalent to symmetric key size. Suppose
that key sizes have to be determined that are currently at least equivalent to
a symmetric key size d. Note that the resulting formulas must be independent
of our assumptions on security margin, hardware advances, or cryptanalytic
progress. The only settings used here are P (cf. 3.2.5) and v (cf. 4.2.2), because
they are the only settings relevant for the current circumstances.

34

Compared to breaking a 56-bit DES key at an expected cost of 5 ∗ 105 Mips-
Years, breaking a key of size d used in conjunction with a symmetric key system
that is v times slower than the DES can be expected to take

EMY (d) = 2d−56 ∗ 5 ∗ 105 ∗ v Mips-Years,

where EMY stands for ‘Equivalent number of Mips-Years’.
If the classical asymmetric key size k is chosen such that

L[2k]
EMY (d)

≥ L[2512]
104

(cf. 4.2.3), then the security offered by classical asymmetric systems is currently
at least computationally equivalent to the security offered by a symmetric key
of size d. But if the classical asymmetric key size k′ is chosen such that

L[2k′]
EMY (d)

≥ L[2512]
104 ∗ 26 ∗ P

(cf. 4.2.3), then the security offered by classical asymmetric systems is currently
at least cost equivalent to the security offered by a symmetric key of size d.

If the EC key size u is chosen such that

2u/2 ∗ u2

EMY (d)
≥ 2109/2 ∗ 1092

2.2 ∗ 106

(cf. 4.2.4), then the security offered by EC systems is currently at least com-
putationally and cost equivalent to the security offered by a symmetric key of
size d.

If the SDL subgroup size z satisfies

z ≥ 109 + 2 ∗ log2

(
EMY (d) ∗ 1092 ∗ 9
k̄2 ∗

√
2 ∗ 2.2 ∗ 106

)
(cf. 4.2.5), where k̄ is the finite field size, then the security offered by SDL systems
is currently at least equivalent to the security offered by a symmetric key of size d:
computationally equivalent if k̄ = k and cost equivalent if k̄ = k′, with k and k′

as above.
From the formulas given here and in Subsection 4.2 it is obvious how formulas

should be obtained for key sizes equivalent to a given symmetric key size in
a given year: use the formulas from Subsection 4.2 with IMY (y) replaced by
EMY (d).

4.6.2 Looking up currently computationally equivalent key sizes. As-
suming the default settings, Table 1 can also be used to look up the key sizes
that follow from the formulas in 4.6.1. Given a symmetric key size d, asymmetric
key sizes that are currently computationally equivalent to it can be looked up as

35

follows. For classical asymmetric systems look up the classical asymmetric key
size for year y′ = 30∗d/43+1950.8. This formula follows by solving the equation

EMY (d) = IMY (y′) ∗ 212(y′−1999)/r

for y′ (cf. 4.2.1). For the other systems let y be the year in Table 1 in which d
occurs in the symmetric key size column. For SDL look up the SDL key size
z for year y, the classical asymmetric key size k′ for year y′, and the classical
asymmetric key size k for year y; then subgroups of size z+4∗log2(k)−4∗log2(k′)
over a field of size k′ offer security that is currently computationally equivalent,
in the year 1999, to symmetric keys of size d. For EC simply look up the EC key
size for year y and ‘c = 0’.

Given a classical asymmetric key size k, the currently computationally equiv-
alent symmetric key size can be found by looking up the year y in which k occurs,
and by using symmetric key size 43∗y/30−2796.2; this follows immediately from
y′ = 30 ∗ d/43 + 1950.8.

As an example, for a symmetric key of size d = 85 we find that y = 2019
and y′ = 30 ∗ 85/43 + 1950.8 = 2010.1. Currently computationally equivalent
key sizes are: about 1375 bits for classical asymmetric keys, subgroups of size
150 + 2 = 152 over 1375 bits fields, and EC systems of 160-bits. Similarly,
for a classical asymmetric key of size k′ = 1024 we find that y = 2002 and
that a currently computationally equivalent symmetric key size is given by 43 ∗
2002/30 − 2796.2 ≈ 74. The latter corresponds to a currently computationally
equivalent EC key size of 139 bits.

4.6.3 Looking up currently cost-equivalent key sizes. Given a symmetric
key size d, asymmetric key sizes that are currently cost equivalent to it can be
looked up in a very similar way: just replace 1950.8 and 2796.2 from 4.6.2 by
1942.9 and 2784.9, respectively. This formula follows by solving the equation

EMY (d)
26 ∗ P

= IMY (y′) ∗ 212(y′−1999)/r

for y′. Here we use Default Setting VII (i.e., P = 100, cf. 3.2.5) as in Subsec-
tion 4.5. As an example, for a symmetric key of size d = 85 we find that y = 2019
and y′ = 30 ∗ 85/43 + 1942.9 = 2002.2. Currently cost-equivalent key sizes are:
about 1036 bits for classical asymmetric keys, subgroups of size 150 + 2 = 152
over 1036 bits fields, and EC systems of 160 bits.

Similarly, for a classical asymmetric key of size k = 1024 we find that y =
2002 and that a currently cost-equivalent symmetric key size is given by 43 ∗
2002/30− 2784.9 ≈ 85.

5 Practical Consequences

5.1 DSS

The US Digital Signature Standard (DSS) uses 160-bit subgroups with field sizes
ranging from 512 to 1024 bits, and a 160-bit hash function. According to Table 1

36

only the largest field size (1024) can be recommended for commercial applications
and then only until the year 2002. The other sizes can be recommended until
2013 for the hash function, and until 2026 for the subgroup size. Assuming the
default settings, the security offered by the DSS may become inadequate very
soon, unless the DSS is used in combination with a 1513-bit finite field until
2013. A change in the field size does not affect the size of the DSS signatures.
Beyond 2013 the 160-bit size of SHA-1, the cryptographic hash function used
in conjunction with the DSS, may no longer be adequate. Note, however, that
the hash size may have to match the subgroup size, so that changing the hash
size may force a change in the subgroup size that would otherwise not have been
necessary until 2026.

According to [25], NIST is working on a revision for the DSS, with key sizes
as reported in Table 2 (and hash size matching the size of q).

Table 2. Proposed key sizes for the revised DSS

size q 160 256 384 512

size p 1024 3072 7680 15360

These values are in close agreement with the values that follow from our current
cost equivalence model as in Subsection 4.5 (i.e., with Default Setting VII P =
100, cf. 3.2.5). However, it follows from Table 1 that the p sizes have to grow
much faster than proposed in Table 2 if current cryptanalytic trends persist and
if equivalence between the sizes of p and q has to be maintained in the future.

5.2 Effect on cryptosystem speed

RSA keys that are supposed to be secure until 2040 are about three times larger
than the popular 1024-bit RSA keys that are currently secure. That makes those
large keys 9 to 27 times slower to use: 9 for signature verification or encryption
assuming a fixed length public exponent, 27 for the corresponding signature gen-
eration or decryption. TDL systems will slow down by a factor 27 compared to
those that are currently secure. SDL systems slow down by about a factor 11
compared to currently secure SDL systems, because of the growth of the un-
derlying finite field combined with the growth of subgroup size. The speed of
EC systems, however, is hardly affected: a slowdown by a factor of at most 4,
assuming cryptanalytic progress with c = 18. Within a few years, however, faster
processors will have solved these performance problems if our default setting for
m turns out to be reasonable. Note, however, that this may not be the case in
more restricted environments such as smartcards, where bandwidth and power
consumption constraints also have a more limiting effect on key sizes.

37

5.3 512-bit RSA keys

Despite the fact that they were already considered to be suspicious in 1990,
512-bit RSA keys are still widely used all over the Web. For instance, 512-bit
RSA moduli are used in the international version of Secure Socket Layer (SSL)
secured webservers to exchange session keys. An attacker who breaks an SSL
RSA modulus will be able to access all session keys used by the SSL server,
and hence all information protected by those keys. According to Table 1, 512-bit
RSA keys should not have been used beyond 1986.

It should be noted that, apart from the security risk of using 512-bit RSA
keys, there are also considerable publicity risks in using them: organizations
using them may get bad media-coverage when it is found out, because a 512-bit
RSA key was factored in August 1999. Although this result is the first published
factorization of a 512-bit RSA modulus, it would be näıve to believe that it is
the first time such a factorization has been obtained (Remark 1.4.1 and 2.4.5).

5.4 768-bit RSA keys

According to Table 1 usage of 768-bit RSA keys can no longer be recommended.
Even in the cost-equivalent model 768-bit RSA keys will soon no longer offer
security comparable to the security of the DES in 1982.

5.5 RSA and EC

If one evaluates L[21024] (cf. 2.4.4) omitting the o(1) the result is close to the
number of 32-bit operations to be performed by an attack using Pollard’s rho
method on a 160-bit EC system. It was shown in 2.4.6, however, that L[n] sub-
stantially overestimates the actual number of operations to be performed by the
NFS factorization of n. Nevertheless, in the (commercial) cryptographic litera-
ture 1024-bit RSA and 160-bit EC systems are often advertised as offering more
or less the same level of security.

If one is interested in currently computationally equivalent security then
1024-bit RSA and 139-bit EC systems or 1375-bit RSA and 160-bit EC systems
may be considered to be comparable, as follows from the example in 4.6.2. For
currently cost-equivalent security the example in 4.6.3 suggests that 1024-bit to
1035-bit RSA and 160-bit EC systems may be comparable. This last comparison
depends strongly on the setting one deems reasonable for the parameter P , as
explained in 3.2.5 and Subsection 4.5.

5.6 SDL and EC

The gap between the suggested SDL and EC key sizes widens slowly. This is due
to the rapidly growing size of the underlying finite fields in SDL, which makes
the finite field operations required for an attack using Pollard’s rho method
relatively slow. Note that the field size for SDL systems can be found in the
classical asymmetric key size column of Table 1.

38

5.7 Effectiveness of guessing

The sizes suggested in Table 1 for the year 2000 or later give keys that are in
practice infeasible to guess.

5.8 Effectiveness of Incomplete Attacks

Spending only a fraction IMY (y)/x of the full effort IMY (y) (cf. 4.2.1) required
to break a system using the key sizes suggested for year y leads to success proba-
bility 1/x for exhaustive search (symmetric systems; cf. 2.2.7), 0 for the (DL)NFS
(classical asymmetric systems, cf. 2.4.9; for the ECM see Subsection 5.9), or 1/x2

for Pollard’s rho method (SDL and EC; cf. 2.5.6 and 2.6.7). This implies that
on average incomplete attacks cannot be expected to pay off. Despite the lack
of appreciable economic incentive an attacker may nonetheless try to harness a
small fraction of the required run time and get a non-negligible chance that his
efforts bear fruit. As noted in Remark 3.1.4, however, if our definition of security
margin (cf. 3.1.2) is acceptable, then this risk is acceptable as well.

5.9 Effectiveness of Elliptic Curve Method

The Elliptic Curve Method (ECM) finds a 167-bit factor of a 768-bit number
with probability 0.63 after spending 6200 Mips-Years, under the assumption
that such a factor exists [47]. Based on this data point, we have computed the
probability that the ECM successfully factors RSA moduli of the sizes specified
in Table 1, assuming we invest the corresponding IMY (y) Mips-Years (cf. 4.2.1)
in each factoring attempt: for a 952-bit RSA modulus the probability of success
is 2.6 ∗ 10−7 after spending 7.1 ∗ 109 Mips-Years (for y = 2000), deteriorating
to probability 1.9 ∗ 10−9 for a 1149-bit modulus in 2005, and 1.2 ∗ 10−11 for
1369 bits in 2010. It follows that, despite the impossibly large investment, the
ECM cannot be expected to break keys of the suggested sizes. The ECM success
probability vanishes with the years, consistent with the fact that the NFS is
asymptotically superior to the ECM. Note that these probabilities apply only to
regular RSA where the modulus has two prime factors of about equal size. If the
primes have different sizes [32] or if there are more primes dividing the modulus
([31]: the ‘Multiprime’ variation of RSA), the success probability of the ECM is
considerably higher.

5.10 Wassenaar Arrangement for mass market applications

Currently the Wassenaar Arrangement allows 64-bit symmetric keys and 512-
bit classical asymmetric keys for mass market applications. According to Table 1
and publicly available data on successful attacks it would be advisable (in 2001)
to increase the 512-bit bound for classical asymmetric keys to a more reasonable
bound such as 736 or 832 bits.

Disclaimer. The contents of this article are the sole responsibility of its au-
thors and not of their employers. The authors or their employers do not accept

39

any responsibility for the use of the cryptographic key sizes recommended in
this article. The authors do not have any financial or other material interests
in the conclusions attained in this article, nor were they inspired or sponsored
by any party with commercial interests in cryptographic key size selection. The
data presented in this article were obtained in a two stage approach that was
strictly adhered to: formulation of the model and collection of the data points,
followed by computation of the lower bounds. No attempt has been made to
alter the resulting data so as to better match the authors’ (and possibly oth-
ers’) expectations or taste. The authors made every attempt to be unbiased as
to their choice of favorite cryptosystem, if any. Although the analysis and the
resulting guidelines seem to be quite robust, this will no longer be the case if
there is some ‘off-the-chart’ cryptanalytic or computational progress affecting
any of the cryptosystems considered here. Indeed, according to at least one of
the present authors, strong long-term reliance on any current cryptosystem with-
out very strong physical protection of all keys involved – including public ones
– is irresponsible. This does not necessarily imply lack of trust in public key
cryptosystems – it reflects mixed feelings about the way they are implemented
or embedded in applications.

Acknowledgment. The authors want to thank Stuart Haber for his exten-
sive comments on several versions of this article, Kai Puolamäki for provid-
ing the Java applet that allows easy computation of the key size formulas, Joe
Buhler, Bruce Dodson, Don Johnson, Paul Leyland, Alfred Menezes, Andrew
Odlyzko, Michael Wiener, and Paul Zimmermann for their helpful remarks, and
two anonymous referees for their much appreciated comments (cf. 3.1.2 and Re-
mark 4.1.1).

References

1. Ross Anderson, Why cryptosystems fail, Comm. of the ACM, v. 37, n. 11, Nov.
1994, 32-40.

2. E. Biham, A fast new DES implementation in software, Proceedings of Fast Soft-
ware Encryption, LNCS 1267, Springer 1994.

3. M. Blaze, W. Diffie, R.L. Rivest, B. Schneier, T. Shimomura, E. Thompson, M.
Wiener, Minimal key lengths for symmetric ciphers to provide adequate commercial
security, www.bsa.org/policy/encryption/cryptographers c.html, January 1996.

4. A. Bosselaers, Even faster hashing on the Pentium, rump session presenta-
tion at Eurocrypt’97, May 13, 1997; www.esat.kuleuven.ac.be/~cosicart/pdf/AB-
9701.[pdf, ps.gz].

5. J.R.T. Brazier, Possible NSA decryption capabilities, jya.com/nsa-study.htm.
6. S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgomery, B. Murphy,

H.J.J. te Riele, et al., Factorization of a 512-bit RSA modulus, Proceedings Euro-
crypt 2000, LNCS 1807, 1-17, Springer 2000.

7. www.certicom.com, 1997.
8. www.counterpane.com/speed.html.
9. M. Davio, Y. Desmedt, J. Goubert, F. Hoornaert, J.J. Quisquater, Efficient hard-

ware and software implementations of the DES, Proceedings Crypto’84, Springer
1984.

40

10. W. Diffie, BNR Inc. report, 1980.
11. W. Diffie, E. Hellman, Exhaustive cryptanalysis of the NBS Data Encryption Stan-

dard, Computer, v. 10 (1977), 74-84.
12. B. Dixon, A.K. Lenstra, Factoring integers using SIMD sieves, Proceedings Euro-

crypt’93, LNCS 765, 28-39, Springer 1993.
13. Electronic Frontier Foundation, Cracking DES, O’Reilly, July 1998.
14. R. Gallant, personal communication, August 1999.
15. R. Gallant, R. Lambert, S. Vanstone, Improving the parallelized Pollard lambda

search on binary anomalous curves; available from www.certicom.com/chal/down-
load/paper.ps, 1998.

16. D.B. Johnson, ECC, Future Resiliency and High Security Systems, March 30, 1999,
available from www.certicom.com.

17. A. Joux, A one round protocol for tripartite Diffie-Hellman, Proceedings ANTS IV,
LNCS 1838, 358-394, Springer 2000.

18. A. Joux, K. Nguyen, Separating Decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups, available from http://eprint.iacr.org, 2000.

19. P.C. Kocher, Breaking DES, RSA Laboratories’ Cryptobytes, v. 4, no 2 (1999),
1-5; also at www.rsasecurity.com/rsalabs/pubs/cryptobytes.

20. P.C. Kocher, personal communication, September 1999.
21. A.K. Lenstra, A. Shamir, Analysis and optimization of the TWINKLE factoring

device, Proceedings Eurocrypt 2000, LNCS 1807, 35-52, Springer 2000.
22. A.K. Lenstra, E.R.Verheul, Selecting Cryptographic Key Sizes, Proceedings PKC

2000, LNCS 1751, 446-465, Springer 2000; full version available from www.crypto-
savvy.com.

23. A.K. Lenstra, E.R.Verheul, The XTR public key system, Proceedings Crypto 2000,
LNCS 1880, 1-19, Springer 2000; available from www.ecstr.com.

24. P. Leyland, personal communication, September 1999 - February 2001.
25. A.J. Menezes, personal communication, September 1999.
26. P.L. Montgomery, letter to the editor of IEEE Computer, August 1999.
27. V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm,

Mathematical Notes, 55 (2) 1994, 155-172. Translated from Matematicheskie Za-
metki, 55(2), 91-101, 1994. This result dates from 1968.

28. Tiniest circuits hold prospect of explosive computer speeds, The New York Times,
July 16, 1999; Chip designers look for life after silicon, The New York Times, July
19, 1999.

29. A.M. Odlyzko, The future of integer factorization, RSA Laboratories’ Cryptobytes,
v. 1, no. 2 (1995), 5-12; also at www.research.att.com/amo/doc/crypto.html or
www.rsasecurity.com/rsalabs/pubs/cryptobytes.

30. K. Puolamäki, Java applet on www.cryptosavvy.com.
31. www.rsa.com and www.rsasecurity.com.
32. A. Shamir, RSA for paranoids, RSA Laboratories’ Cryptobytes, v. 1, no. 3 (1995),

1-4.
33. A. Shamir, Factoring integers using the TWINKLE device, Proceedings CHES ’99,

LNCS 1717, Springer 1999.
34. P.W. Shor, Algorithms for quantum computing: discrete logarithms and factoring,

Proceedings of the IEEE 35th Annual Symposium on Foundations of Computer
Science, 124-134, 1994.

35. V. Shoup, Lower bounds for discrete logarithms and related problems, Proceedings
Eurocrypt’97, LNCS 1233, 256-266, Springer 1997.

36. R.D. Silverman, rump session presentation at Crypto’97.

41

37. R.D. Silverman, Exposing the Mythical Mips-Year, IEEE Computer, August 1999,
22-26.

38. R.D. Silverman, A cost-based security analysis of symmetric and asymmetric key
lengths, RSA Laboratories Bulletin, number 13, April 2000.

39. Simon Singh’s cipher challenge, www.simonsingh.com/cipher.htm.
40. P.C. van Oorschot, M.J. Wiener, Parallel collision search with cryptanalytic appli-

cations, Journal of Cryptology, v. 12 (1999), 1-28.
41. E.R. Verheul, Evidence that XTR is more secure than supersingular elliptic curves,

Proceedings Eurocrypt 2001, to appear, Springer 2001.
42. www.wassenaar.org.
43. M.J. Wiener, Efficient DES key search, manuscript, Bell-Northern Research, Au-

gust 20, 1993.
44. M.J. Wiener, Performance Comparison of Public-Key Cryptosystems, RSA Labo-

ratories’ Cryptobytes, v. 4, no. 1 (1998), 1-5; also at www.rsasecurity.com/rsalabs/
pubs/cryptobytes.

45. M.J. Wiener, personal communication, 1999.
46. M.J. Wiener, R.J. Zuccherato, Faster attacks on elliptic curve cryptosystems, in S.

Tavares and H. Meijer, eds., Selected areas in Cryptography’98, LNCS 1556, 1999,
Springer 1999.

47. P. Zimmermann, personal communication, 1999.

This article was processed using the LATEX macro package with LLNCS style

42

